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Abstract

We develop a duality for (modal) lattices that need not be distributive, and use it to study
positive (modal) logic beyond distributivity, which we call weak positive (modal) logic.
This duality builds on the Hofmann, Mislove and Stralka duality for meet-semilattices.
We introduce the notion of Π1-persistence and show that every weak positive modal logic
is Π1-persistent. This approach leads to a new relational semantics for weak positive modal
logic, for which we prove an analogue of Sahlqvist correspondence result.1
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1 Introduction

Dualities between modal algebras and modal spaces on the one hand and Heyting algebras and
Esakia spaces on the other have been central to the study of modal and intermediate logics [6, 8].
Indeed, many important results such as Sahlqvist canonicity and correspondence [44] can be
understood through the lenses of duality techniques [45]. The duality between modal algebras
and modal spaces has been extended to a duality between modal distributive lattices and modal
Priestley spaces in [25, 7]. This led to a Sahlqvist theory for the positive distributive modal
logic introduced in [15, 20, 7].

When the algebraic side of a duality consists of distributive lattice expansions, in the spatial
side of the duality one often works with the Priestley space [41, 11] of all the prime filters of
a given lattice. This is no longer the case when the base lattice is non-distributive. There are
many extensions of dualities for Boolean algebras and distributive lattices to the setting of all
lattices, e.g. by Urquhart [46], Hartonas [27, 28], Gehrke and Van Gool [22], Goldblatt [26], and
Hartung [29]. Each of these uses either a ternary relation, or two-sorted frames. While these
approaches have proven fruitful and interesting, they are quite different from known dualities
for propositional logics such as Stone and Priestley dualities. This makes it difficult to adjust
existing tools and techniques from distributive logics to non-distributive ones.

Hofmann, Mislove and Stralka (HMS) [32] developed a duality for (not necessarily distribu-
tive) meet-semilattices along the same lines of the van Kampen-Pontryagin duality for locally
compact abelian groups given in [42]. This was later restricted to a duality for lattices by Jipsen
and Moshier [40]. In this approach, the dual space of a lattice is based not on the prime filters,
but on all the (proper) filters. This is closely related to Holliday’s possibility semantics of modal
logic [34] (see also [33]) and to the choice-free duality for Boolean algebras in [4], which are also

1This paper is partially based on the Master’s thesis [14].



based on spaces of all proper filters. A similar approach was also developed for ortholattices by
Goldblatt [24] and extended later by Bimbó [5].

The aim of this paper is to investigate positive modal logic that is not necessarily distributive.
We refer to this as weak positive modal logic. It is a logic with the same language as positive
modal logic, i.e. the negation- and implication-free fragment of classical modal logic, which does
not necessarily satisfy the distributivity axiom.

We study these logics via a duality that builds on HMS duality. We recall that a Priestley
space is a partially ordered compact space satisfying the Priestley separation axiom

x ≰ y implies that there is a clopen upset U such that x ∈ U and y /∈ U .

These spaces provide a duality for bounded distributive lattices, which associates every Priestley
space with the lattice of its clopen upsets. In the HMS duality, one works with similar structures,
but the role of partially ordered compact spaces is played by meet-semilattices with a compact
topology and that of clopen upsets by clopen filters. Then the HMS analogue of the Priestley
separation axiom is

x ≰ y implies that there is a clopen filter U such that x ∈ U and y /∈ U .

These spaces provide a duality for bounded meet-semilatices.
Our approach is analogous to the one of Esakia duality for Heyting algebras. Recall that

an Esakia space is a Priestley space where for every pair of clopen upsets U and V the Heyting
implication U → V is also a clopen upset (this is sometimes formulated as the equivalent
condition that ↓U is clopen for every clopen U) [16, 17]. In analogy with this, an HMS space
is said to be a lattice space if the join in the lattice of filters of every pair U and V of clopen
filters (i.e. {x | x ≥ a ∧ b for some a ∈ U and b ∈ V }) is also a clopen filter.

We extend this duality to modal lattices in the signature with two unary modalities, and
. More precisely, by a modal lattice we understand a lattice with a top element ⊤ and two

modalities related via Dunn’s axiom x ∧ y ≤ (x ∧ y) [15] and satisfying the equations
⊤ ≈ ⊤ ≈ ⊤. Furthermore, while will be assumed to distribute over finite meets, we

require to be merely monotone. A similar phenomenon in the context of modal intuitionistic
logic has been investigated in [38]. Despite the asymmetry between and , on the dual side
these modalities are interpreted via a binary relation in the standard way.

This duality allows us to define a new relational semantics for weak positive modal logics in
which the analogue of a Kripke frame is a meet-semilattice with an extra relation. The meet
gives rise to a partial order, so these frames can be viewed as bi-relational frames where the
relations satisfy certain conditions. Formulae are interpreted as filters, disjunction is interpreted
as the least filter generated by the interpretation of each disjunct, and modalities are interpreted
in the standard way. This new semantics can be seen as a generalisation of the team semantics
of [31] and of the modal information semantics of [3, 37].

Kripke semantics for intuitionistic and modal logics is tightly related to the theory of canon-
ical extensions [35, 18, 19]. This is largely due to the fact that a formula is valid in the Kripke
frame associated with a Heyting or modal algebra A if and only if it is valid in the canonical
extension of A. In our case, the role of canonical extensions is played by Gehrke and Priest-
ley’s Π1-completions [21]. This is because a formula is valid in the Kripke frame associated
with a modal lattice A by our duality iff it is valid in the Π1-completion of A. Notably, the
Π1-completion of A can be described concretely as the modal lattice of all filters of the lattice
of filters of A (or, equivalently, as the composition of the filter and the ideal completions of A).

Our main results are Sahlqvist-style preservation and correspondence results for weak posi-
tive modal logic with respect to this new semantics. Using a duality technique similar to that
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of Sambin and Vaccaro [45], we show that every sequent is preserved by Π1-completion. Note
that in the propositional setting this corresponds to the fact that every variety of lattices is
closed under ideal completions and filter completions [43, 2].

We also prove an analogue of the Sahlqvist correspondence result. In particular, we introduce
Sahlqvist sequents in our language and show that every Sahlqvist sequent has a first-order corre-
spondent. We also introduce the notion of Π1-persistence for weak positive modal logics, which
is a logical analogue for the corresponding class of algebra to be closed under Π1-completions
and show that every weak positive modal logic is Π1-persistent. As a result every weak positive
modal logic is complete with respect to our relational semantics. We point out that an alterna-
tive approach to Sahlqvist correspondence and canonicity for non-distributive logics has been
undertaken in [10], although this perspective is based on canonical extensions and is, therefore,
orthogonal to the one developed in this paper.

With this paper we hope to lay a groundwork for a theory of weak positive modal logics.
As discussed in the conclusion, there are many interesting directions for future research. These
include the study of logics that lie between non-distributive and distributive positive (modal)
logic, deriving more results for the weak modal logic presented in this paper, as well as extending
weak positive logic with different types of modalities.

2 Preliminaries

We briefly recall a Stone-type duality for the category of meet-semilattices with top due to
Hofmann, Mislove and Stralka [32]. We then restrict this to a duality for lattices, and show
how it relates to various completions of lattices.

2.1 Dual Adjunctions

2.1 Definition. By a semilattice we mean a meet-semilattice with top. Every semilattice
(X,⊤,∧) has an underlying partial order ≤ given by x ≤ y iff x ∧ y = x. A (semilattice)
homomorphism from (X,⊤,∧) to (X ′,⊤′,∧′) is a function f : X → X ′ such that f(⊤) = ⊤′

and f(x∧ y) = f(x)∧′ f(y) for all x, y ∈ X. We write MSL for the category of semilattices and
homomorphisms.

Similarly, by a lattice we mean a bounded lattice, and lattice homomorphisms are assumed
to preserve these bounds. We write Lat for the category of lattices and lattice homomorphisms.

If (X,≤) is a partial order (possibly coming from a semilattice (X,⊤,∧)) and a ⊆ X then
we define the upward closure of a by ↑a := {y ∈ X | x ≤ y for some x ∈ a}. The set a is
called upward closed or an upset if ↑a = a. If a = {x} then we write ↑x instead of ↑{x}. The
downward closure and downsets are defined similarly.

2.2 Definition. A filter p of a semilattice (X,⊤,∧) is a nonempty upset p ⊆ X that is closed
under meets. It is called principal if p = ↑x for some x ∈ X.

Filters of (X,⊤,∧) correspond bijectively to homomorphisms to the two-element semilattice
2 = {⊤, ∗}: every filter p yields a characteristic map χp : X → 2 given by χp(x) = ⊤ iff x ∈ p,
and conversely for every homomorphism f : X → 2, f−1(⊤) is a filter. For every semilattice
(X,⊤,∧), the collection F(X,⊤,∧) of filters forms a complete semilattice ordered by subset
inclusion. It is then easy to see that the filter X is the largest element in F(X,⊤,∧) and that
the greatest lower bound of a collection of filters is given by their intersection. Therefore it is
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also a (complete) lattice. The top and bottom element of F(X,⊤,∧) are given by X and {⊤}.
Binary joins are given by

p ▽ q = ↑{x ∧ y | x ∈ p, y ∈ q},

and the join of any set F ⊆ F(X,⊤,∧) can be given by
`
F =

⋃
{p1▽ · · ·▽pn | p1, . . . , pn ∈ F}.

This assignment F extends to a contravariant functor F : MSL → MSL if we define its action
on a homomorphism f : (X,⊤,∧) → (X ′,⊤′,∧′) by Ff = f−1 : F(X ′,⊤′,∧′) → F(X,⊤,∧).
For a semilattice (X,⊤,∧), let

η(X,⊤,∧) : (X,⊤,∧) → FF(X,⊤,∧) : x 7→ {p ∈ F(X,⊤,∧) | x ∈ p}.

This yield a natural transformation η : idMSL → FF that satisfies Fη ◦ ηF = ifF. Therefore:

2.3 Proposition. The functor F then establishes a dual adjunction between MSL and MSL
with both units given by η.

In preparation for using semilattices as interpretation for weak positive logic (Section 3), and
for the duality for lattices that we derive in Theorem 2.14, we restrict the functor F : MSL →
MSL to functors Lat → LFrm and LFrm → Lat. One occurrence of MSL is restricted to Lat, while
the other occurrence is restricted to the category of semilattices and so-called L-morphisms. The
situation is analogous to that for intuitionistic logic, where the functors establishing the dual
adjunction between distributive lattices and posets restrict to contravariant functors between
the categories of Heyting algebras and intuitionistic Kripke frames (see Figure 1).

MSL MSL

LFrm Lat

F

Fb

F

Fb

Pos DL

IntKrip HA

up

pf

up

pf

Figure 1: Functors between categories of (semi)lattices. The upper rows are dual adjunctions.
up takes a poset to its lattice of upsets, and pf takes a lattice to its ordered set of prime filters.

2.4 Definition. An L-morphism between semilattices (X,∧) and (X ′,∧′) is a semilattice
homomorphism f : (X,∧) → (X ′,∧′) that satisfies for all x ∈ X and y′, z′ ∈ X ′:

• If f(x) = ⊤′ then x = ⊤;

• If y′ ∧ z′ ≤ f(x) then ∃y, z ∈ X s.t. y′ ≤′ f(y) and z′ ≤′ f(z) and y ∧ z ≤ x. In a picture:

x
f(x)

y z

f(y) f(z)
y ∧ z

y′ z′

y′ ∧ z′

f

f

f
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We write LFrm for the category of semilattices and L-morphisms.

The category LFrm will be used in Section 3 as frame semantics for weak positive logic.

2.5 Proposition. If f : (X,⊤,∧) → (X ′,⊤′,∧′) is an L-morphism, then f−1 : F(X ′,⊤′,∧′) →
F(X,⊤,∧) is a lattice homomorphism.

Proof. We know that f−1 is a semilattice homomorphism. The map f−1 preserves the bottom
element because f−1({⊤′}) = {⊤}. For preservation of joins, we need to show that

f−1(a′ ▽ b′) = f−1(a′) ▽ f−1(b′) (1)

for a′, b′ ∈ F(X ′,⊤′,∧′). The inclusion ⊇ follows from the fact that f−1(a′ ▽ b′) is a filter that
contains both f−1(a′) and f−1(b′). Conversely, if x ∈ f−1(a′ ▽ b′) then f(x) ∈ a′ ▽ b′ so there
exist y′ ∈ a′ and z′ ∈ b′ such that y′ ∧ z′ ≤ f(x). Since f is an L-frame morphism, we can find
y, z ∈ X such that y′ ≤ f(y) and z′ ≤ f(z) and y ∧ z ≤ x. This means that y ∈ f−1(a′) and
z ∈ f−1(b′), and hence x ∈ f−1(a′) ▽ f−1(b′).

It follows that F restricts to a contravariant functor F : LFrm → Lat.

2.6 Proposition. Let h : L → L′ be a lattice homomorphism. Then h−1 : FL′ → FL is an
L-morphism.

Proof. We know that h−1 is a semilattice homomorphism, so we only have to show that it
satisfies the additional conditions from Definition 2.4. For the first one, suppose h−1(p′) = L
(L is the top element of FL). Then ⊥ ∈ h−1(p′), so ⊥′ = h(⊥) ∈ p′, and therefore p′ = L′.

Next, let p′ ∈ FL′ and q, r ∈ FL and suppose q ∩ r ⊆ h−1(p′). Let q′ := ↑h[q] and
r′ := ↑h[r]. Then it is easy to verify that q′ and r′ are filters (because q and r are), and by
construction q ⊆ h−1(q′) and r ⊆ h−1(r′). It remains to show that q′ ∩ r′ ⊆ p′. Let a′ ∈ L′ be
such that a′ ∈ q′ ∩ r′. Since a′ ∈ q′ there exists a ∈ q such that h(a) ≤ a′. Since a′ ∈ r′ there
exists b ∈ r such that h(b) ≤ a′. But then a ∨ b ∈ q ∩ r, so by assumption h(a ∨ b) ∈ p′. This
implies a′ ∈ p′, because h(a ∨ b) = h(a) ∨ h(b) ≤ a′ and p′ is a filter (hence up-closed).

2.2 Dual Equivalences

HMS duality is obtained from the dual adjunction in Proposition 2.3 by equipping one side
with a Priestley topology.

2.7 Definition. An HMS-space is a tuple X = (X,⊤,∧, τ) such that (X,⊤,∧) is a semilattice,
(X, τ) is a compact topological space, and X satisfies the HMS separation axiom:

for all x, y ∈ X, if x ̸≤ y then there exists a clopen filter a such that x ∈ a and y /∈ a;

An HMS-morphism is a continuous semilattice homomorphism. We write HMS for the category
of HMS-spaces and HMS-morphisms.

The HMS separation axiom is a variation of the Priestley separation axiom. It immediately
implies that any HMS-space is Hausdorff. Furthermore, it can be shown that every HMS-space is
zero-dimensional, i.e. every open neighbourhood of a point x contains a clopen neighbourhood
of x. To see this, suppose b is an open neighbourhood of a point x in an HMS-space X =
(X,⊤,∧, τ). Then for each y ∈ X \ b either x ̸≤ y or y ̸≤ x. By the HMS separation axiom,
there exist a clopen filter or a complement of a clopen filter (which is clopen as well) containing
x but not y. By construction, the intersection of these clopen neighbourhoods of x is contained
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in b. Since b is open and X is compact, there exists a finite number of such neighbourhoods
whose intersection is contained in b. This finite intersection is the desired clopen neighbourhood
of x. Thus, (X, τ) is a Stone space.

For future reference, we prove some properties of closed sets and filters of an HMS-space.

2.8 Lemma. Let X = (X,⊤,∧, τ) be an HMS-space and c ⊆ X a filter. Then (i) c is a closed
iff (ii) c is principal iff (iii) c is the intersection of clopen filters.

Proof. The implication (ii) ⇒ (iii) follows from the HMS separation axiom and (iii) ⇒ (i) is
obvious. For (i) ⇒ (ii), suppose c is not principal. Then for each x ∈ c there exists a y ∈ c
strictly below x. So for each x ∈ c, using the HMS separation axiom, we can find a clopen filter
ax such that c ̸⊆ ax. Then {ax | x ∈ c} is an open cover of c without finite subcover. (Indeed,
for every finite collection ax1

, . . . , axn
we can find y1, . . . , yn such that yi ∈ c but yi /∈ ai. Then

y1 ∧ · · · ∧ yn is in c but not in any of the axi
.) So c is not compact, hence not closed.

2.9 Lemma. Let c be a closed subset of an M-space X = (X,∧, τ). Then ↑c is closed as well.

Proof. If y /∈ ↑c then for each x ∈ c we have x ̸≤ y, hence a clopen filter ax containing x but
not y. Then c ⊆

⋃
x∈c ax, so by compactness we find a finite subcover, say, c ⊆ a1 ∪ · · · ∪ an.

Since all the ai are upward closed, we have ↑c ⊆ a1 ∪ · · · ∪ an. By construction, none of the ai
contain y, so X \ (a1 ∪ · · · ∪ an) is an open neighbourhood of y disjoint from ↑c.

The clopen filters of an HMS-space form a semilattice with the whole space as top element
and intersection as meet. This gives rise to a contravariant functor

Fclp : HMS → MSL,

which sends HMS-morphisms to their inverse. In the converse direction, for every semilattice
(X,⊤,∧) we can equip F(X,⊤,∧) with a topology to obtain an HMS space, as follows.

2.10 Definition. Let A be a bounded semilattice. Define FtopA = (FA,A,∩, τA), where τA is
the topology generated by

{θA(a) | a ∈ A} ∪ {θA(a)c | a ∈ A}, (2)

with θA(a) = {p ∈ FA | a ∈ p} and θA(a)
c = FA \ θA(a). Defining Ftoph = h−1 for a

semilattice homomorphism h, we obtain a contravariant functor Ftop : MSL → HMS.

We now obtain (a reformulation of) the duality Hofmann, Mislove and Stralka [32, 12, 9].

2.11 Theorem. The functors Fclp and Ftop establish a dual equivalence HMS ≡op MSL.

2.12 Remark. The following alternative proof for HMS duality was pointed out by the re-
viewer: The forgetful functor U : DL → MSL from distributive lattices to meet-semilattices has
a left adjoint Fr : MSL → DL. It follows that, for any semilattice L, the hom sets HomMSL(L, 2)
and HomDL(FrL, 2) are naturally isomorphic. Using this, it is easy to see that the Priestley
space dual to FrL coincides with the HMS space dual to L. We can then derive HMS duality
for semilattices by observing that the Priestley spaces dual to the free distributive lattice over
a semilattice are precisely those whose underlying poset forms a semilattice. ◁

We wish to restrict this to a duality for lattices. To this end, we restrict the category HMS
to L-spaces and suitable morphisms.
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2.13 Definition. A lattice space or L-space is an HMS-space X = (X,⊤,∧, τ) such that a▽b is
clopen whenever a and b are clopen filters. An L-space morphism is a continuous L-morphism.
We write LSpace for the category of L-spaces and their morphisms.

2.14 Theorem. The duality for bounded semilattices from Theorem 2.11 restricts to a duality

LSpace ≡op Lat.

Proof. We only have to verify that the restriction of Fclp to LSpace lands in Lat, and the
restriction of Ftop to Lat lands in LSpace. The former follows from the fact that the clopen
filters of an L-space are closed under ▽, together with Proposition 2.5.

For the latter, suppose that L is a lattice and let θL(a) and θL(b) be two arbitrary clopen
filters of FtopL. Writing x, y, z for elements in FtopL, we have

θL(a) ▽ θL(b) = ↑{x ∩ y | x ∈ θL(a), y ∈ θL(b)} = θL(a ∨ b)

Let us elaborate on the last equality. If x ∈ θL(a) and y ∈ θL(b) then a ∈ x and b ∈ y,
so a ∨ b ∈ x ∩ y. So z ⊇ x ∩ y implies a ∨ b ∈ z, and therefore we have “⊆”. Conversely,
if z ∈ θL(a ∨ b) then we need to find x ∈ θL(a) and y ∈ θL(b) such that x ∩ y ⊆ z. Let
x = ↑a ∈ θL(a) and y = ↑b ∈ θL(b). Then d ∈ x ∩ y implies a ≤ d and b ≤ d, hence a ∨ b ≤ d.
Since z ∈ θL(a∨ b) this implies d ∈ z, and therefore x∩y ⊆ z. This proves “⊇”. The restriction
on morphisms follows from Proposition 2.6.

2.15 Remark. In [40], Moshier and Jipsen study a spectral analogue of Hofmann, Mislove and
Stralka’s duality for semilattices, which they also call HMS duality. Their “HMS spaces” relate
to the original ones in the same way spectral spaces relate to Priestley spaces. Moshier and
Jipsen also restrict their duality to lattices, obtaining what they call “BL spaces”. Likewise,
these are equivalent to our L-spaces through the same change of topology. Note that, while the
join on BL spaces is defined via an infinite intersection of open filters (see [40, Section 3]), it
coincides with the usual join of filters considered here.

In [14] Theorem 2.14 was proven with different terminology: L-spaces and -morphisms are
called “PUP spaces” and “PUP morphisms,” and the category LSpace is called PUP. ◁

2.3 Completions of lattices

We relate several completions of a lattice to collections of certain filters of its dual L-space.

2.16 Definition. A completion of a lattice L is a pair (e, C) where C is a complete lattice and
e : L→ C is a lattice embedding. An element in C is called open if it is the join of elements in
the image of e, and closed if it is the meet of elements in the image of e.

A completion (e, C) is called dense if every element of C can be written as the join of meets
of elements in L, and as the meet of joins of elements in L. It is called compact if for any set A
of closed elements of C and B of open elements of C,

∧
A ≤

∨
B if and only if there are finite

subsets A′ ⊆ A and B′ ⊆ B such that
∧
A′ ≤

∨
B′.

It is well known that every lattice has a dense and compact completion which is unique up
to isomorphism, see e.g. [18, Propositions 2.6 and 2.7].

2.17 Definition. Let L be a lattice.

1. The ideal completion of L is the collection ieL of ideals of L ordered by inclusion, with
i : L → ieL given by a 7→ ↓a. Meets in ieL are given by intersection. As a consequence,
the join of a collection of ideals is the smallest ideal containing their union.

7



2. The filter completion of L is the collection feL of filters of L ordered by reverse inclusion,
with i : L → feL : a 7→ ↑a. Then arbitrary joins in FL are given by intersections, and
the meet of a collection of filters in feL is the smallest filter of L containing their union.

3. The canonical extension of L is the unique dense and compact completion of L.

4. The Π1-completion of a lattice L is given by the composition of the ideal and the filter
completion. That is, it consists of the lattice ie(feL) with inclusion a 7→ {p ∈ feL | a ∈ p}.

The Π1-completion was studied in [21]. Note that the ideal and filter completions are closely
related. If we denote by L◦ the lattice L with the order reversed, then the ideals of L correspond
to the filters of L◦ and we get ieL = (feL◦)◦.

A filter p of an L-space X = (X,⊤,∧, τ) is called saturated if it equals the intersection of all
open filters containing p. The collection of saturated filters of X is denoted by FsatX.

2.18 Proposition. Let L be a lattice and XL its dual L-space.

1. The filter completion of L is isomorphic to the complete lattice Fk(XL) of principal filters
of XL of L, with inclusion θL : L→ Fk(XL) : a 7→ θ(a).

2. The canonical extension of L is isomorphic to the complete lattice Fsat(XL) of saturated
filters of XL, with inclusion θL : L→ Fsat(XL) : a 7→ θ(a).

3. The Π1-completion of L is isomorphic to the complete lattice F(XL) of filters of XL, with
inclusion θL : L→ F(XL) : a 7→ θ(a).

Proof. The first item follows from the lattice of principal filters of L being isomorphic to L◦ and
FL = (feL)o. The second item is similar to [40, Theorem 4.1]. Finally, the third item follows
from the mentioned above connection between filter and ideal completions ieL = (feL◦)◦

together with FL = (feL)o.

3 Semilattice semantics for weak positive logic

We use the duality and dual adjunction from Section 2 to give frame semantics for weak positive
logic, i.e. the logic the same signature as positive logic, but with lattices as algebraic semantics.
Inspired by the fact that the filters of a semilattice form a lattice, we use semilattices as frames
and (principal) filters as denotations of formulae.

We start this section by giving an axiomatisation of our logic. By design the algebraic
semantics is simply given by lattices. In Section 3.2 we define frames and models, give examples,
and prove that the frame semantics is sound. In Section 3.3 we use the duality from Section 2
to derive completeness for weak positive logics with respect to several classes of frames. We give
the standard translation into a suitable first-order logic and prove Sahlqvist correspondence in
Section 3.4, where we also work out specific examples of correspondence results.

To distinguish the various notions of entailment each has their own notation, which are
summarised in Table 1. We denote the interpretation of a formula φ in a lattice 𝒜 and in a
frame M by LφM𝒜 and JφKM, respectively. Besides, we write 1 and ⋏ for the top element and
meets of a semilattice when it is regarded as frame semantics.
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Notation Purpose Location

φ ⊢ ψ Syntactic entailment Def. 3.1
φ ψ Algebraic entailment Def. 3.3
φ ⊩ ψ Semantic entailment Def. 3.6
φ ⊩LSpace ψ Topological semantic entailment Def. 3.17
φ |= ψ First-order entailment Sec. 3.4

Table 1: Different notions of entailment.

3.1 Logic and Algebraic Semantics

Let L(Prop) denote the language generated by the grammar

φ ::= p | ⊤ | ⊥ | φ ∧ φ | φ ∨ φ,

where p ranges over some arbitrary but fixed set Prop of proposition letters. If no confusion
arises we omit reference to Prop and simply write L. We define logics based on L as a collection
of consequence pairs, similar to e.g. [15]. A consequence pair is an expressions of the form φ P ψ
where φ and ψ are formulae in L, and intuitively means: “If φ holds, then so does ψ.”

3.1 Definition. Let L be the smallest set of consequence pairs closed under the following
axioms and rules:

p P ⊤, ⊥ P p, top and bottom

p P p,
p P q q P r

p P r
, reflexivity and transitivity

p ∧ q P p, p ∧ q P q,
r P p r P q

r P p ∧ q
, conjunction rules

p P p ∨ q, q P p ∨ q, p P r q P r

p ∨ q P r
disjunction rules

If Γ is a set of consequence pairs then we let L(Γ) denote the smallest set of consequence pairs
closed under uniform substitution, axioms and rules mentioned above and those in Γ. We write
φ ⊢Γ ψ if φ P ψ ∈ L(Γ) and φ ⊣⊢Γ ψ if both φ ⊢Γ ψ and ψ ⊢Γ φ. If Γ is the empty set then
we simply write φ ⊢ ψ and φ ⊣⊢ ψ.

The algebraic semantics of the logic L are simply lattices. We establish this formally.

3.2 Definition. Let A be a lattice with operations ⊤A,⊥A,∧A,∨A, and induced order ≤A. A
lattice model is a pair 𝒜 = (A, σ) consisting of a lattice A and an assignment σ : Prop → A
of the proposition letters. The assignment σ uniquely extends to a map L ·M𝒜 : L → A by
interpreting connectives with their lattice counterparts.

We say that a lattice A validates a consequence pair φ P ψ if LφM𝒜 ≤A Lψ M𝒜 for all lattice
models 𝒜 based on A, notation: A φ P ψ. We also write A φ = ψ if A validates both
φ P ψ and ψ P φ. If Γ is a set of consequence pairs then we write Lat(Γ) for the full subcategory
of Lat whose objects validate all consequence pairs in Γ.

3.3 Definition. Let Γ∪{φ P ψ} be a set of consequence pairs. Write φ Γ ψ if LφM𝒜 ≤A Lψ M𝒜
for every lattice model 𝒜 = (A, σ) with A ∈ Lat(Γ). We abbreviate φ ∅ ψ to φ ψ.
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Observe that ⊣⊢Γ is an equivalence relation on L. Write L(Γ) for the set of ⊣⊢Γ-equivalence
classes of L, and denote by [φ] the equivalence class of φ in L(Γ). Then it follows from the rules in
Definition 3.1 that L(Γ) carries a lattice structure, where⊤L = [⊤], ⊥L = [⊥], [φ]∧L[ψ] = [φ∧ψ]
and [φ] ∧L [ψ] = [φ ∨ ψ]. Moreover, L(Γ) is in Lat(Γ), and setting σL : Prop → L(Γ) : p 7→ [p]
yields lattice model ℒΓ = (L(Γ), σL) which acts as the Lindenbaum-Tarski algebra. It follows
from induction on the structure of φ that LφMℒΓ

= [φ] for all L-formulae φ.

3.4 Lemma. We have φ Γ ψ if and only if LφMℒΓ
≤L Lψ MℒΓ

.

Proof. The “only if” holds by definition. Conversely, if A ∈ Lat(Γ) and 𝒜 = (A, σA) is a lattice
model, then the assignment [p] 7→ σA(p) extends to a lattice homomorphism i : ℒΓ → 𝒜 such
that [φ] = LφM𝒜. (This is well defined because A validates all consequence pairs in Γ.) Then
LφMℒΓ

≤L Lψ MℒΓ
implies [φ] ≤L [ψ]. Monotonicity of i yields LφM𝒜 ≤L Lψ M𝒜, hence φ Γ ψ.

3.5 Theorem. We have φ ⊢Γ ψ if and only if φ Γ ψ.

Proof. By Lemma 3.4 it suffices to show that φ ⊢Γ ψ if and only if LφMℒΓ
≤L Lψ MℒΓ

. It follows
from the conjunction rules, reflexivity and transitivity that φ ⊢Γ ψ if and only if φ ∧ ψ ⊣⊢Γ φ.
Therefore we have φ ⊢Γ ψ if and only if [φ ∧ ψ] = [φ] in ℒΓ, and since [φ ∧ ψ] = [φ] ∧L [ψ] this
holds if and only if [φ] ≤L [ψ]. Recalling that [φ] = LφMℒΓ

completes the proof.

3.2 Frame Semantics

The collection of filters of a semilattice forms a lattice. Therefore we can use semilattices
as frame semantics of weak positive logic, with filters serving as denotations of formulae. If
moreover the semilattice is a lattice, then we can also use principal filters as denotations of
formulae.

3.6 Definition. A lattice model or L-model is a semilattice (X, 1,⋏) together with a valuation
V : Prop → F(X, 1,⋏) which assigns to each proposition letter a filter of (X, 1,⋏). An L-model
(X, 1,⋏, V ) is called principal if (X, 1,⋏) has a bottom element 0 and binary joins denoted by
⋎ (so it forms a lattice) and V (p) is a principal filter for all p ∈ Prop.

The interpretation of an L-formula φ at a state x in a (principal) L-model M = (X, 1,⋏, V )
is defined recursively via

M, x ⊩ ⊤ always

M, x ⊩ ⊥ iff x = 1

M, x ⊩ p iff x ∈ V (p)

M, x ⊩ φ ∧ ψ iff M, x ⊩ φ and M, x ⊩ ψ

M, x ⊩ φ ∨ ψ iff ∃y, z ∈ X s.t. M, y ⊩ φ and M, z ⊩ ψ and y ⋏ z ≼ x

We write JφKM := {x ∈ X | M, x ⊩ φ} for the truth set of φ inM. If the underlying (semi)lattice
is fixed and we want to emphasise the role of the valuation in the interpretation, we will write
V (φ) instead of JφKM. The theory of x is denoted by thM(x) := {φ ∈ L | M, x ⊩ φ}.

Note that the (semi)lattice underlying an L-model is uniquely determined by its partial
order. So we may view L-models as a type of relational semantics, where the relation is used to
define a non-standard interpretation of joins. When viewed as frame semantics, we denote the
top element and meet of a semilattice by 1 and ⋏ and call the semilattice itself an L-frame.
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3.7 Definition. We write M, x ⊩ φ P ψ if x ∈ JφKM implies x ∈ JψKM, and M ⊩ φ P ψ if
JφKM ⊆ JψKM. If X is an L-frame, we let X, x ⊩ φ P ψ if M, x ⊩ φ P ψ for all L-models M
based on X, and X ⊩ φ P ψ if X, x ⊩ φ P ψ for all states x of X.

We say that M or X validates φ P ψ if M ⊩ φ P ψ or X ⊩ φ P ψ, respectively. If Γ is a set
of consequence pairs, then we let LFrm(Γ) denote the full subcategory of LFrm whose objects
validate all consequence pairs in Γ. We write φ ⊩Γ ψ if X ⊩ φ P ψ for all X ∈ LFrm(Γ). If
Γ = ∅ then we write φ ⊩ ψ instead of φ ⊩∅ ψ.

For any L-frame F = (X,≤), the collection F∗ := F(X,≤) forms a lattice, called the complex
algebra of F. Since valuations of F correspond bijectively to assignments of F∗, we can define
the complex algebra of an L-model M = (X,≤, V ) by M∗ = (F(X,≤), V ). A routine induction
on the structure of φ then proves the following lemma.

3.8 Lemma. For every L-model M and L-formula φ we have JφKM = LφMM∗ .

The next persistence result is similar to persistence in intuitionistic logic, except we require
formulae to be interpreted as (principal) filters rather than upsets.

3.9 Proposition (Persistence). Let M = (X, 1,⋏, V ) be a (principal) L-model. Then for each
φ ∈ L the truth set JφKM of φ is a (principal) filter of (X, 1,⋏).

Proof. The fact that JφKM is a filter for each φ follows from Lemma 3.8. SupposeM is principal.
Then JpKM is principal by definition, as are J⊥KM = ↑⊤ and J⊤KM = ↑0. If φ = φ1 ∧ φ2 or
φ1 ∨ φ2 then we proceed by induction. We may assume that Jφ1KM = ↑x1 and Jφ2KM = ↑x2,
so that Jφ1 ∧ φ2KM = ↑(x1 ⋎ x2) and Jφ1 ∨ φ2KM = ↑(x1 ⋏ x2).

3.10 Theorem (Soundness). If φ ⊢Γ ψ then φ ⊩Γ ψ.

Proof. If M is an L-model that validates all consequence pairs in Γ, then M∗ ∈ Lat(Γ). Since
φ ⊢Γ ψ, Theorem 3.5 yields φ Γ ψ, and hence LφMM∗ ≤ Lψ MM∗ . Lemma 3.8 now implies
JφKM ≤ JψKM, so that M validates φ P ψ.

We turn the collections of (principal) L-models into a category by equipping with truth-
preserving morphisms.

3.11 Definition. An L-model morphism from (X, 1,⋏, V ) to (X ′, 1′,⋏′, V ′) is an L-morphism
(Definition 2.4) f : (X, 1,⋏) → (X ′, 1′,⋏′) that satisfies V = f−1 ◦ V ′.

A routine induction on the structure of φ shows that L-model morphisms preserve and
reflect truth of L-formulae.

3.12 Proposition. Let f : M → M′ be an L-model morphism. Then for all states x of M and
all φ ∈ L,

M, x ⊩ φ iff M′, f(x) ⊩ φ.

The remainder of this subsection is devoted to examples of L-frames and -models.

3.13 Example. Any linearly ordered set with a largest element is an L-frame. Filters in such
frames are simply upsets. For example N∪ {∞} with the usual ordering is an L-frame which is
prinicipal. The set N ordered by ≥ is also an L-frame, with top element 0. It is not principal
because it lacks a bottom element. ◁

3.14 Example. As another example, consider the collection PωX of finite subsets of X. This
forms a semilattice with top element ∅, and meet given by the set-theoretic union. Filters of
PωX correspond bijectively with subsets of X. ◁
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3.15 Example (Propositional team semantics). We briefly recall a simplified version of team
semantics for propositional logics, underlying versions of modal dependence and independence
logics such as the ones studied in [30, 39, 47, 48]. Let T(Prop) the language be given by the
grammar φ ::= p | ¬p | φ ∧ φ | φ ∨ φ. Then T(Prop)-formulae can be interpreted in models
consisting of a set X and a valuation Π : Prop → PX of the proposition letters. However,
rather than assigning truth of formulae to elements of X, truth is defined for subsets of X (the
teams). Let M = (X,Π) be such a model and T ⊆ X a team, then we let

M, T ⊩t p iff T ⊆ V (p)

M, T ⊩t ¬p iff T ∩ V (p) = ∅
M, T ⊩t φ ∧ ψ iff M, T ⊩t φ and M, T ⊩t ψ

M, T ⊩t φ ∨ ψ iff ∃T1, T2 ⊆ T s.t. T1 ∪ T2 = T and M, T1 ⊩t φ and M, T2 ⊩t ψ

We can add ⊤, which is true for every team, and ⊥ satisfying M, T ⊩t ⊥ iff T = ∅.
This interpretation resembles Definition 3.6. Let us make this precise. For a set Prop of

proposition letters, let ¬Prop = {¬p | p ∈ Prop}. Then, given a team model M = (X,Π),
we can define a principal L-model M′ = (PX, ∅,∪, V ), with V (p) = {a ∈ PX | a ⊆ Π(p)}
and V (¬p) = {a ∈ PX | a ∩ Π(p) = ∅}. Then for each team model M, team T , and formula
φ ∈ T(Prop) we have

M, T ⊩t φ iff M′, T ⊩ φ.

This can be proven by induction on the structure of φ. The only non-trivial step is for joins:

M, t ⊩t φ ∨ ψ iff ∃T1, T2 ∈ PX s.t. T1 ∪ T2 = T and M, T1 ⊩t φ and M, T2 ⊩t ψ

iff ∃T1, T2 ∈ PX s.t. T1 ∪ T2 = T and M′, T1 ⊩ φ and M′, T2 ⊩ ψ

iff ∃T ′
1, T

′
2 ∈ PX s.t. T ′

1 ∪ T ′
2 ⊇ T and M′, T ′

1 ⊩ φ and M′, T ′
2 ⊩ ψ

iff M′, T ⊩ φ ∨ ψ

The first “iff” is the definition of ⊩t, the second follows from the induction hypothesis. The
third “iff” follows from persistence and the fact that the frame is ordered by reverse inclusion,
and the last “iff” hold by the definition of ⊩. ◁

3.16 Example (Modal information logic). Modal information logic [3] is the extension of
propositional classical logic with two binary modal operators ⟨inf⟩ and ⟨sup⟩. These are inter-
preted in Kripke models M = (X,R, V ) where R is a pre-order on X as follows:

M, x ⊩ ⟨inf⟩(φ,ψ) iff ∃y, z ∈ X s.t. x = inf(y, z) and M, y ⊩ φ and M, z ⊩ ψ

M, x ⊩ ⟨sup⟩(φ,ψ) iff ∃y, z ∈ X s.t. x = sup(y, z) and M, y ⊩ φ and M, z ⊩ ψ

Note that we need not require that every pair of states has an infimum and a supremum, nor
that it is unique. The definition simply uses the fact that they might exist. Observe that we can
recover the usual modal and temporal diamonds via φ = ⟨inf⟩(φ,⊤) and φ = ⟨sup⟩(φ,⊤).

Clearly, every L-model is a model for modal information logic. Interestingly, the interpre-
tation of ⟨inf⟩ is closely aligned to our interpretation of joins; the only difference is that the
infimum is allowed to be below the state under consideration. Taking this into account, our
interpretation of joins in an L-model M = (X, 1,⋏, V ) coincides with

φ ∨ ψ = (⟨inf⟩(φ,ψ)),

where ∨ is the non-classical join of weak positive logic. ◁
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3.3 Descriptive Frames and Completeness

We have already seen a duality for lattices by means of L-spaces. Since every L-space is based
on a complete semilattice, L-spaces can be viewed as topologised (principal) L-frames. In this
subsection we define clopen valuations for L-spaces and show how this gives rise to completeness
results. We denote L-spaces and L-spaces with a valuation by X and M. If X is an L-space,
then we write κX for its underlying (principal) L-frame.

3.17 Definition. A clopen valuation for an L-space X is an assignment V : Prop → FclpX,
which assigns to each proposition letter a clopen filter of X. We call a pair M = (X, V ) of an
L-space and a clopen valuation an L-space model. The interpretation JφKM of an L-formula φ
in an L-space model M = (X, V ) is defined as in the underlying L-model (κX, V ).

An L-space model M validates a consequence pair φ P ψ if JφKM ⊆ JψKM, notation: M ⊩
φ P ψ. We say that an L-space X validates φ P ψ if every L-space model based on it validates
φ P ψ. Finally, we write φ ⊩LSpace ψ if every L-space validates φ P ψ.

3.18 Lemma. Let X be an L-space, A its dual lattice, and φ,ψ ∈ L. Then

X ⊩ φ iff A φ and X ⊩ φ P ψ iff A φ P ψ.

Proof. The first “iff” follows from the fact that clopen valuations of X correspond bijectively to
assignments of the proposition letters for A, together with a routine induction on the structure
of φ. The second “iff” follows immediately from the first.

3.19 Remark. We can alternatively describe L-spaces as descriptive L-frames. This is similar
to the perspective of Esakia spaces as descriptive intuitionistic Kripke frames, see [17, Chapter 3]
and [8, Section 8]. We briefly sketch this alternative perspective.

A general L-frame is a tuple (X, 1,⋏, A) such that (X, 1,⋏) is an L-frame and A is a
collection of filters of (X, 1,⋏) containing X and ∅, and closed under ∩ and ▽. Let −A =
{X \ a | a ∈ A}. A descriptive L-frame is a general L-frame (X, 1,⋏, A) that is

• refined : for all x, y ∈ X such that x ̸≼ y there exists an a ∈ A such that x ∈ a and y /∈ a;

• compact : if C ⊆ A ∪ −A has the finite intersection property then
⋂
C ̸= ∅.

A general L-morphism from (X, 1,⋏, A) to (X ′, 1′,⋏′, A′) is an L-morphism f : (X, 1,⋏) →
(X ′, 1′,⋏′) such that f−1(a′) ∈ A for all a′ ∈ A′. Write D-LFrm for the category of descriptive
L-frames and general L-morphisms. Then we have D-LFrm ∼= LSpace. ◁

Next, we use the notion of Π1-preservation to prove a general completeness result.

3.20 Definition. A consequence pair φ P ψ is called Π1-persistent if for every L-space X,

X ⊩ φ P ψ implies κX ⊩ φ P ψ.

It is well known that filter and ideal completions preserve all (in)equalities (see e.g. [43]).
Combining this with Lemmas 3.8 and 3.18 we find:

3.21 Lemma. Any consequence pair ψ P χ of L-formulae is Π1-persistent.

3.22 Theorem. Let Γ be a set of consequence pairs. Then the logic L(Γ) is sound and complete
with respect to the following classes of frames:

• D-LFrm(Γ) (descriptive frames validating Γ);
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• PLFrm(Γ) (principal L-frames validating Γ);

• LFrm(Γ) (L-frames validating Γ).

Proof. Soundness holds by definition, so we prove completeness. Suppose φ ̸⊢Γ ψ. Then by
Theorem 3.5 we can find a lattice A validating all consequence pairs in Γ, but not φ P ψ. As
a consequence of Lemma 3.18 the L-space X dual to A validates all consequence pairs in Γ but
does not validate φ P ψ, thus we find completeness with respect to D-LFrm(Γ).

Since X ̸⊩ φ P ψ there must exist a clopen valuation V such that (X, V ) ̸⊩ φ P ψ. Therefore
(κX, V ) ̸⊩ φ P ψ. Besides, Lemma 3.21 implies that κX validates all consequence pairs in Γ.
This implies completeness with respect to LFrm(Γ). Lastly, we note that X is a principal L-frame
and since V is clopen is assigns to each proposition letter a principal filter. Thus X is a principal
L-frame validating Γ but not φ P ψ, proving completeness with respect to PLFrm(Γ).

3.23 Remark. Another way to prove Theorem 3.22 is via a Sahlqvist-style argument and
the correspondence proved in Section 3.4. This resembles the approach taken by Sambin and
Vaccaro [45]. For the detailed order-topological proof we refer to [14, Section 4.2]. The basic
idea is as follows: if a sequent is refuted on some L-frame, then it is refuted on this frame via
a minimal valuation which is closed. An analogue of the so-called intersection lemma entails
that the value of a positive formula on a closed valuation is the intersection of the values of this
formula on a clopen valuation. This produces a clopen valuation refuting the sequent. ◁

3.24 Remark. The Π1-persistence discussed here allows us to move from valuations that
interpret proposition letters as clopen filters to valuations that assign to each proposition letter
an arbitrary filter. It is analogous to d-persistence in intuitionistic and modal logics [6, 8]. In the
classical setting d-persistence allows one to move from clopen valuations to arbitrary valuations,
and in the intuitionistic case from valuations into clopen upsets to valuations into all upsets.
We point out that, while in the distributive setting this corresponds algebraically to canonical
extensions, in our setting the corresponding algebraic structure is the Π1-completion. ◁

3.4 The First-Order Translation and Sahlqvist Correspondence

In this section we define the standard translation of L into a suitable first-order logic. We
use this to derive a Sahlqvist correspondence result. We prove that for every consequence pair
ψ P χ, the collection of L-frames validate ψ P χ are first-order definable. Our proof of the
correspondence result follows a standard proof from normal modal logic, such as found in [6,
Section 3.6]. Thus, it showcases how our duality for lattices allows us to transfer classical
techniques to the positive non-distributive setting. However, it is complicated (or rather, made
more interesting) by the non-standard interpretation of disjunctions.

3.25 Definition. Let FOL be the single-sorted first-order language which has a unary predicate
Pp for every proposition letter p, and a binary relation symbol R.

Intuitively, the relation symbol of our first-order language accounts of the poset structure
of L-frames. It is used in the translation of disjunctions.

If x, y and z are first-order variables, then we can express that x is above every lower bound
of y and z in the ordering induced by the relation symbol R using a first-order sentence. In
order to streamline notation we abbreviate this as follows:

abovemeet(x; y, z) := ∀w((wRy ∧ wRz) → wRx).
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If x, y1, . . . , yn is a finite set of variables and n ≥ 1 then we define abovemeet(x; y1, . . . , yn) in
the obvious way. In particular, abovemeet(x; y) is simply xRy.

We are now ready to define the standard translation.

3.26 Definition. Let x be a first-order variable. Define the standard translation stx : L →
FOL recursively via

stx(p) = Ppx

stx(⊤) = (x = x)

stx(⊥) = ∀y(yRx)
stx(φ ∧ ψ) = stx(φ) ∧ stx(ψ)

stx(φ ∨ ψ) = ∃y∃z(abovemeet(x; y, z) ∧ sty(φ) ∧ stz(ψ))

Furthermore, we define the standard translation of a consequence pair φ P ψ as

stx(φ P ψ) = stx(φ) → stx(ψ).

Every L-model M = (X,≤, V ) gives rise to a first-order structure for FOL: ≤ accounts for
the interpretation of the binary relation symbol, and the interpretation of the unary predicates
is given via the valuations of the proposition letters. We write M◦ for the L-model M conceived
of as a first-order structure for FOL.

3.27 Proposition. For every L-model M and state w of M we have

1. M, w ⊩ φ iff M◦ |= stx(φ)[w];

2. M, w ⊩ φ P ψ iff M◦ |= stx(φ P ψ)[w].

Proof. The first item follows immediately from the definition of the standard translation, and
the other item follows from the first one.

In order to obtain similar results as in Proposition 3.27 for frames, we need to quantify the
unary predicates in FOL corresponding to the proposition letters. We can do so in a second-
order language, say, SOL. However, getting a second-order correspondent for a consequence
pair φ P ψ that is satisfied in a frame if and only if φ P ψ is, is not as easy as simply
quantifying over all possible interpretations of the unary predicates. That is, we cannot simply
add ∀P1 · · · ∀Pn in front of stx(φ P ψ). Indeed, we wish to only take those interpretations into
account that arise from a valuation of the proposition letters as filters.

Thus we wish to quantify over interpretations of the unary predicates corresponding to
filters in the underlying frame. We can force this by adding conditions that ensure that the
P ’s are interpreted as filters in the antecedent of the implication stx(φ) → stx(ψ). Then the
implication is vacuously true for “illegal” interpretations of the unary predicates. This intuition
motivates the following definition of the second-order translation of a consequence pair.

3.28 Definition. Let p1, . . . , pn be the proposition letters occurring in ψ and χ, and let
P1, . . . , Pn denote their corresponding unary predicates. For each Pi, abbreviate

isfil(Pi) = ∃wPiw ∧ ∀x∀y∀z((Piy ∧ Piz ∧ abovemeet(x; y, z)) → Pix).

Using this abbreviation, we define the second order translation of a consequence pair ψ P χ by

so(ψ P χ) = ∀P1 · · · ∀Pn

(
(isfil(P1) ∧ · · · ∧ isfil(Pn) ∧ stx(ψ)) → stx(χ)

)
. (3)
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To disburden notation, we will often abbreviate isfil(P1) ∧ · · · ∧ isfil(Pn) as ISFIL.
Since all unary predicates in so(ψ P χ) are in the scope of a quantifier, the formula so(ψ P χ)

can be interpreted in a first-order structure with a single relation. Therefore, every L-model X
gives rise to a structure X◦ for SOL in which we can interpret second order translations.

3.29 Lemma. For all L-frames X = (X, 1,⋏) and all consequence pairs ψ P χ we have

X, w ⊩ ψ P χ iff X◦ |= so(ψ P χ)[w].

Proof. If X, w ⊩ ψ P χ then w ∈ V (ψ) implies w ∈ V (χ) for every valuation V for X. If any
of the Pi is interpreted as a subset of X that is not a filter, then the implication inside the
quantifiers in (3) is automatically true, because the antecedent is false. If all Pi are interpreted
as filters, then the implication holds because of the assumption. The converse is similar.

Next, we show how one can use the second-order translation to obtain local correspondence
results. We first define what we mean by local correspondence.

3.30 Definition. Let φ P ψ be a consequence pair and α(x) a first-order formula with free
variable x. Then we say that φ P ψ and α(x) are local frame correspondents if for any L-frame
X and any state w we have

X, w ⊩ φ P ψ iff X |= α(x)[w].

Since our language is positive, every formula is upward monotone. That is, extending the
valuation increases the truth set of formulae.

3.31 Lemma. Let X be an L-frame and let V and V ′ be valuations for X such that V (p) ⊆ V ′(p)
for all p ∈ Prop. Then for all φ ∈ L we have V (φ) ⊆ V ′(φ).

We now prove that every consequence pair has a local correspondent.

3.32 Theorem. Any consequence pair ψ P χ of L-formulae locally corresponds to a first-order
formula with one free variable.

Proof. We know that X, w ⊩ ψ P χ if and only if X◦ |= so(ψ P χ)[w]. Our strategy for
obtaining a first-order correspondent is to remove all second-order quantifiers from the second-
order translation. We assume that no two quantifiers bind the same variable.

If ψ is equivalent to ⊤ then as a consequence of Lemma 3.31 ψ P χ is equivalent to ⊤ P χ′,
where χ′ is obtained from χ by replacing all proposition letters with ⊥. This, in turn, implies
that so(⊤ P χ′) is a first-order correspondent of ⊤ P χ, since the lack of proposition letters in
χ′ implies that there are no second-order quantifiers in so(⊤ P χ′). If ψ is equivalent to ⊥ then
ψ P χ is vacuously valid on all L-frames. So we may assume that the antecedent does not use
⊤ or ⊥.

Let p1, . . . , pn be the propositional variables occurring in ψ, and write P1, . . . , Pn for their
corresponding unary predicates. We assume that every proposition letter that occurs in χ also
occurs is ψ, for otherwise we may replace it by ⊥ to obtain a formula which is equivalent in
terms of validity on frames.

Step 1. Use equivalences of the form

(∃w(α(w)) ∧ β) ↔ ∃w(α(w) ∧ β), (∃w(α(w)) → β) ↔ ∀w(α(w) → β)
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to pull out all quantifiers that arise in stx(ψ). Let Y := {y1, . . . , ym} denote the set of (bound)
variables that occur in the antecedent of the implication from the second-order translation. We
end up with a formula of the form

∀P1 · · · ∀Pn∀y1 · · · ∀ym
(
(ISFIL∧AT∧REL) → stx(χ)

)
. (4)

Here ISFIL = isfil(P1)∧· · ·∧ isfil(Pn), AT is a conjunction of formulae of the form Piz and REL
is a conjunction of formulae of the form abovemeet(z; z′, z′′), where z, z′, z′′ ∈ Y ∪ {x}.

Step 2. Next we read off minimal instances of the Pi making the antecedent true. Intuitively,
these correspond to the smallest valuations for the pi making the antecedent true. For each
proposition letter Pi, let Piyi1 , . . . , Piyik be the occurrences of Pi in AT in the antecedent of (4).
We define the valuation of pi to be the filter generated by the (interpretations of) yi1 , . . . , yik .
Formally,

σ(Pi) := λu.abovemeet(u; yi1 , . . . , yik).

(If k = 0, i.e. there is no variable y with Piy, then we let σ(Pi) = λu.(u ̸= u).) Then for each
L-model M and states x′, y′1, . . . , y

′
m in M we have

M◦ |= AT∧REL[x, y′1, . . . , y
′
m] implies M◦ |= ∀y(σ(Pi)y → Piy).

If we replace each unary predicate P in (4) with σ(P ), then all conjoints in ISFIL and AT
become true. Writing [σ(P )/P ] stx(χ) for the formula obtained from stx(χ) by replacing each
instance of a unary predicate P with σ(P ), we arrive at the first-order formula

∀y1 · · · ∀ym
(
REL → [σ(Pi)/Pi] stx(χ)

)
(5)

Step 3. Finally, we claim that for every L-frame X, X◦ validates (4) if and only if it validates
(5). The implication from left to right is simply an instantiation of the quantifiers as filters.
For the converse, assume that M is some model based on X, so that M◦ is an extension of X◦

giving the interpretations of the unary predicates as filters. We may disregard the case where
any of them is not a filter as that would make the antecedent in (4) false, hence the whole
implication true. Let x′, y′1, . . . , y

′
m be states in M and assume that

M◦ |= ISFIL∧AT∧REL[x′, y′1, . . . , y
′
m]. (6)

We need to show that M◦ |= stx(χ)[x
′, y′1, · · · , y′m]. It follows from the assumption that (5)

holds that M◦ |= [σ(P )/P ] stx(χ)[x
′, y′1, · · · , y′m]. Moreover, as a consequence of (6) we have

M◦ |= ∀y(σ(P )(y) → Py) for all P ∈ {P1, . . . , Pn}. Using Lemma 3.31 it follows that M◦ |=
stx(χ)[x

′, y′1, · · · , y′m], as desired.

Let us work through some explicit examples so we can see the proof of the theorem in action.
Recall that abovemeet(x; y) is simply xRy.

3.33 Example. Consider the formula p ∧ (q ∨ q′) P (p ∧ q) ∨ (p ∧ q′). This corresponds
to distributivity; the reverse consequence pair is always valid. We temporarily abbreviate
χ := (p ∧ q) ∨ (p ∧ q′). The second-order translation of this formula is

so(p ∧ (q ∨ q′) P χ) = ∀P∀Q∀Q′([isfil(P ) ∧ isfil(Q) ∧ isfil(Q′)

∧ Px ∧ ∃y∃y′(abovemeet(x; y, y′) ∧Qy ∧Q′y′)
]
→ stx(χ)

)
17



As per instructions, we rewrite this to

∀P∀Q∀Q′∀y∀y′
(
(ISFIL∧Px ∧ abovemeet(x; y, y′) ∧Qy ∧Q′y′) → stx(χ)

)
. (7)

Next, we obtain σ(P ) = λu.abovemeet(u;x), which is simply xRu. Similarly we find σ(Q) =
λu.yRu and σ(Q′) = λu.y′Ru. Plugging these into the antecedent yields

[σ(Pi)/Pi](stx(χ)) = ∃z∃z′
(
abovemeet(x; z, z′) ∧ (xRz) ∧ (yRz) ∧ (xRz′) ∧ (y′Rz′)

)
.

Thus we find the following first-order correspondent:

∀x∀y∀y′
(
abovemeet(x; y, y′) →

[
∃z∃z′(abovemeet(x; z, z′) ∧ (xRz) ∧ (yRz)

∧ (xRz′) ∧ (y′Rz′))
])
.

Recall that the predicate R is interpreted as the partial order ≼ underlying an L-frame. Fur-
thermore, since z ∧ z′Rx and xRz and xRz′, we find that z ∧ z′ = x. Thus, a state w in an
L-frame (X, 1,⋏) with partial order ≼, satisfies distributivity if and only if

∀y∀y′
(
(y ⋏ y′ ≼ w) → ∃z∃z′((w = z ⋏ z′) ∧ (y ≼ z) ∧ (y′ ≼ z′))

)
.

Therefore, an L-frame validates distributivity if it is a distributive semilattice. Note that here ⋏
and ≼ are L-frame operators while the quantifiers and →,∧ are connectives from the first-order
language used to reason about L-frames. ◁

3.34 Example. Next consider the modularity axiom

((p1 ∧ p3) ∨ p2) ∧ p3 P (p1 ∧ p3) ∨ (p2 ∧ p3).

Writing χ for the right hand side of the consequence pair, after applying Step 1 of the proof of
Theorem 3.32 we have

∀P1∀P2∀P3∀y∀y′
(
(ISFIL∧P1y ∧ P3y ∧ P2y

′ ∧ P3x ∧ abovemeet(x; y, y′)) → stx(χ)
)

(8)

We then get σ(P1) = λu.yRu, σ(P2) = λu.y′Ru and σ(P3) = λu.abovemeet(u;x, y). Substitut-
ing these and leaving out ISFIL and AT yields

∀y∀y′
[(
abovemeet(x; y, y′) ∧ abovemeet(y;x, y) ∧ abovemeet(x;x, y)

)
→ ∃z∃z′(abovemeet(x; z, z′) ∧ (yRz) ∧ abovemeet(z;x, y) ∧ (y′Rz′) ∧ abovemeet(z′;x, y))

]
.

Leaving out everything that is trivially true, this yields the following condition. A world w in
an L-frame (X, 1,⋏) with partial order ≼ satisfies the modularity axiom if and only if

∀y∀y′((y ⋏ y′ ≼ w) → ∃z∃z′((z ⋏ z′ ≼ w) ∧ (y ≼ z) ∧ (y′ ≼ z′) ∧ (w ⋏ y ≼ z′)).

In yet other words, w satisfies modularity if for all y, y′ ∈ X such that y ⋏ y′ ≼ w we can find
z, z′ above y, y′, respectively, such that z ⋏ z′ ≼ w and w ⋏ y ≼ z′. ◁

4 Normal Modal Extension

We investigate the extension of weak positive logic with two modal operators, and , inter-
preted via a relation in the usual way (see e.g. [6, Definition 1.20]). As our point of departure
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we take L-frames with an additional relation. We stipulate sufficient conditions on the relation
to ensure persistence, but we do not enforce any axioms on the modalities. It then turns out
that preserves finite conjunctions, while, as a consequence of the non-standard interpretation
of disjunctions, only satisfies monotonicity. This is reminiscent of the modal extension of
intuitionistic logic investigated by Kojima [38]. The interaction axioms relating and are
closely aligned to Dunn’s axioms for positive modal logic [15], see Remark 4.8.

After investigating the modal logic from a semantic point of view, we use our newly developed
intuition to give syntactic definition of the logic and its algebraic semantics in Section 4.2, and
a duality in Section 4.3. We then extend the definition of the filter- and Π1-completion to the
modal setting and prove completeness for weak positive modal logic in Section 4.4.

Finally, in Section 4.5 we extend the Sahlqvist correspondence result for weak positive logic
to the modal setting. It is no longer the case that any consequence pair is Sahlqvist, and
we identify as Sahlqvist consequence pairs precisely the negation-free Sahlqvist formulae from
normal modal logic [6, Definition 3.51], where the implication is replaced by P.

One may wonder whether it would be more natural to insist that be normal as well. We
do not because the additional conditions required to ensure that is normal complicate the
presentation of the semantics and duality. Moreover, in order to make normal we only need
to extend our basic system with the consequence pair

(p ∨ q) P p ∨ q,

which is Sahlqvist! We compute its local correspondent in Example 4.42.

4.1 Relational Meet-Frames

Let L be the language generated by the grammar

φ ::= p | ⊤ | ⊥ | φ ∧ φ | φ ∨ φ | φ | φ,

where p ranges over some set Prop of proposition letters. A modal consequence pair is an
expression of the form φ P ψ, where φ,ψ ∈ L . We derive an appropriate notion of modal
L-frame, such that the truth set of each formula is guaranteed to be a filter.

4.1 Definition. A modal L-frame is a tuple (X, 1,⋏, R) where (X, 1,⋏) is an L-frame with
underlying partial order ≼, and R is a binary relation on X such that:

1. If x ≼ y and yRz then there exists a w ∈ X such that xRw and w ≼ y;

2. If x ≼ y and xRw then there exists a z ∈ X such that yRz and w ≼ z;

3. If (x⋏ y)Rz then there exist v, w ∈ X such that xRv and yRw and v ⋏ w ≼ z;

4. If xRv and yRw then (x⋏ y)R(v ⋏ w);

5. For all x, 1Rx if and only if x = 1.

A modal L-model is a a modal L-frame together with a valuation V that assigns to each
proposition letter a filter of (X, 1,⋏).

Just like in the propositional case in Section 3.2, we can identify a class of frames where
formulae can be interpreted exclusively as principal filters. To this end, we define a principal
modal L-frame as a modal L-frame (X, 1,⋏, R) that additionally satisfies:

0. (X, 1,⋏) has binary joins and all non-empty meets;
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3′. If (
c
xi)Rz, where the i range over some index set I, then there exist zi such that xiRzi

for all i ∈ I and
c
zi ≤ z;

4′. If xiRyi, where i ranges over some index set I, then (
c
xi)R(

c
yi);

Clearly, items (3′) and (4′) subsume (3) and (4). A principal modal L-model is a principal
modal L-frame with a valuation that assigns to each proposition letter a principal filter.
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Figure 2: The four conditions of a modal L-frame. Lines denote the poset order, with high
nodes being bigger. Arrows denote the relation R.

4.2 Definition. The interpretation of L -formulae in a (principal) modal L-model M is
defined via the clauses from Definition 3.6 and

M, x ⊩ φ iff ∀y ∈ X,xRy implies M, y ⊩ φ

M, x ⊩ φ iff ∃y ∈ X such that xRy and M, y ⊩ φ

Satisfaction and validity of formulae and modal consequence pairs are defined as expected. In
particular, if 𝒦 is a class of modal L-frames and φ P ψ is a modal consequence pair, then we
write φ ⊩𝒦 ψ if the consequence pair φ P ψ is valid on all frames in 𝒦.

The first four conditions of a modal L-frame are depicted in Figure 2. Observe that (1)
and (5) together imply seriality, i.e. every state has an R-successor. If (X, 1,⋏, R) is a modal
L-frame, then we define for x ∈ X and filters a ⊆ X:

R[x] := {y ∈ X | xRy}, [R]a = {x ∈ X | R[x] ⊆ a}, ⟨R⟩a = {x ∈ X | R[x] ∩ a ̸= ∅}.

Definition 4.1(1) and (2) together say that x ≤ y implies R[x] ⊑ R[y], where ⊑ denotes the
Egli-Milner order on PX [1, Definition 6.2.2]. Furthermore, if M is a modal L-model then

J φKM = [R]JφKM, J φKM = ⟨R⟩JφKM.

Next we prove persistence.

4.3 Proposition. Let M = (X, 1,⋏, R, V ) be a (principal) modal L-model. Then for each
φ ∈ L the set JφKM is a (principal) filter in (X, 1,⋏).

Proof. We assume that M is not principal; the case for principal modal L-models is similar.
The proof proceeds by induction on the structure of φ. The only non-trivial cases are the modal
cases. We prove the statement for φ = ψ; the case φ = ψ is similar.

Suppose φ = ψ, M, x ⊩ ψ and x ≼ y. Then there exists an R-successor z of x satisfying
ψ, and by (2) we can find an R-successor w of y such that z ≼ y. By the induction hypothesis
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we then find M, w ⊩ ψ and therefore M, y ⊩ ψ. Next, suppose that both x and y satisfy
ψ. Then there exist v ∈ R[x] and w ∈ R[y] satisfying ψ. By (4) we have (x ⋏ y)R(v ⋏ w)

and by the induction hypothesis M, v ⋏ w ⊩ ψ. Therefore M, x ⋏ y ⊩ ψ. Lastly, (5) implies
M, 1 ⊩ ψ. We conclude that J ψKM is a filter in (X, 1,⋏).

4.4 Remark. We could have slightly weakened condition 4 by requiring the existence of some
(x ⋏ y)-successor above v ⋏ w. We use the current formulation because it aligns more closely
to the notion of a modal L-space. ◁

Morphisms between modal L-frames and -models are a combination of L-morphisms and an
adaptation of p-morphisms for positive modal logic [7].

4.5 Definition. A bounded L-morphism from (X, 1,⋏, R) to (X ′, 1′,⋏′, R′) is an L-morphism
f : (X, 1,⋏) → (X ′, 1′,⋏′) such that for all x, y ∈ X and z′ ∈ X ′:

1. If xRy then f(x)R′f(y);

2. If f(x)R′z′ then there exists a z ∈ X such that xRz and f(z) ≼′ z′;

3. If f(x)R′z′ then there exists a w ∈ X such that xRw and z′ ≼′ f(w).

(See also Figure 3.) A bounded L-morphism between models is bounded L-morphism between
the underlying frames that preserves and reflects truth of proposition letters.

x
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f(y)

R

f

f

R′
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x

z

f(x)

f(z)

z′

R

f

f
R′

≼′

(2)

x

w

f(x)

f(w)

z′R

f

f

R′

≼′

(3)

Figure 3: The conditions of a bounded L-morphism.

4.6 Proposition. Let M = (X, 1,⋏, R, V ) and M′ = (X ′, 1′,⋏′, R′, V ′) be two (principal)
modal L-models. If f : M → M′ is a bounded L-morphism, x ∈ X and φ ∈ L , then

M, x ⊩ φ iff M′, f(x) ⊩ φ.

Proof. This follows from a routine induction on the structure of φ. We showcase the modal
cases of the proof. Suppose φ = ψ. It follows immediately from Definition 4.5(1) that
M′, f(x) ⊩ ψ implies M, x ⊩ ψ. So suppose M, x ⊩ ψ. If y′ is an R′-successor of f(x),
then there exists some z ∈ X such that xRz and f(z) ≼′ y′. This implies M, z ⊩ ψ and by
induction M′, f(z) ⊩ ψ. Persistence then yields M′, y′ ⊩ ψ. Therefore M′, f(x) ⊩ ψ.

If φ = ψ Then the preservation from left to right follows from Definition 4.5(1). Conversely,
if M′, f(x) ⊩ ψ, then there exists a y′ ∈ X ′ such that f(x)R′y′ and M′, y′ ⊩ ψ. By (3) we
can find some w ∈ X such that xRw and y′ ≼′ f(w). Persistence implies M′, f(w) ⊩ ψ and
induction yields M, w ⊩ ψ. Therefore M, x ⊩ ψ.
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We give a number of modal consequence pairs that are valid in every modal L-frame. These
motivate the definition of a modal lattice in Section 4.2.

4.7 Lemma. Let (X, 1,⋏, R) be a modal L-frame. The following consequence pairs are valid:

⊤ P ⊤ ⊤ P ⊤ (modal top)

(φ ∧ ψ) P φ ∧ ψ φ P (φ ∨ ψ) (monotonicity)

φ ∧ ψ P (φ ∧ ψ) φ ∧ ψ P (φ ∧ ψ) (normality and duality)

Proof. All of these besides ⊤ P ⊤ follow immediately from the definition of the interpretation
of and . In particular, they do not rely on any of the conditions from Definition 4.1. The
validity of ⊤ P ⊤ follows from Definition 4.1(5) and (1).

Observe that the consequence pair ⊤ P ⊤ corresponds to seriality, i.e. the frame condition
that every state has an R-successor. In presence of ⊤ P ⊤ and the duality axiom it is
equivalent to φ P φ.

4.8 Remark. The duality axiom in Lemma 4.7 corresponds to one of Dunn’s duality axioms for
positive modal logic [15]. It seems that the non-standard interpretation of joins makes Dunn’s
other duality axiom, (φ ∨ ψ) P φ ∨ ψ, unsuitable in our context. On the other hand, we
have φ P φ, which is not assumed by Dunn. We flag investigation of the connection between
the various axioms relating and as an interesting direction for further research. ◁

4.2 Logic and Modal Lattices

Guided by the validities from Lemma 4.7, we define the logic L as follows.

4.9 Definition. Let L be the smallest set of modal consequence pairs closed under uniform
substitution, axioms and rules from Definition 3.1, and under:

⊤ P ⊤ ⊤ P ⊤ (modal top)

φ P ψ

φ P ψ

φ P ψ

φ P ψ
(Becker’s rules)

φ ∧ ψ P (φ ∧ ψ) φ ∧ ψ P (φ ∧ ψ) (linearity and duality)

If Γ is a set of modal consequence pairs then L (Γ) denotes the smallest set of modal
consequence pairs closed under the axioms and rules above and those in Γ. We write φ ⊢Γ ψ if
φ P ψ ∈ L (Γ) and φ ⊣⊢Γ ψ if both φ ⊢Γ ψ and ψ ⊢Γ φ, omitting Γ if it is empty.

Observe that Becker’s rule together with linearity for implies that is a normal modal
operator. The algebraic semantics of the logic is given by modal lattices.

4.10 Definition. A modal lattice is a tuple (A, , ) consisting of a lattice A and two maps
, : A→ A satisfying for all a, b ∈ A:

⊤ = ⊤ ⊤ = ⊤
a ≤ (a ∨ b) (a ∧ b) = a ∧ b a ∧ b ≤ (a ∧ b)

A modal lattice homomorphism from (A, , ) to (A′, ′, ′) is a lattice homomorphism h :
A → A′ such that h( a) = ′h(a) and h( a) = ′h(a) for all a ∈ A. We write MLat for the
category of modal lattice and modal lattice homomorphisms.
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4.11 Example. Let X = (X, 1,⋏, R) be a modal L-frame. Then X∗ := (F(X, 1,⋏), [R], ⟨R⟩)
is a modal lattice. If X is principal then X‡ := (Fp(X, 1,⋏), [R], ⟨R⟩) is a modal lattice. ◁

Formulae φ ∈ L can be interpreted in a modal lattice 𝒜 = (A, , ) with an assignment
σ : Prop → A. Analogous to Section 3.1, the interpretation of proposition letters is given by
the assignment, and the connectives and modalities as interpreted via their counterparts in 𝒜.
This gives rise to validity of formulae and modal consequence pairs in a modal lattice 𝒜.

If M = (X, V ) is a modal L-model then V is an assignment for X∗ and we write M∗ =
(X∗, V ). If M = (X, V ) is a principal modal L-model then V is an assignment for X‡ and we
let M‡ = (X‡, V ). We obtain the following counterpart of Lemma 3.8.

4.12 Lemma. Let M be a modal L-model, N a principal modal L-model, and φ ∈ L . Then

JφKM = LφMM∗ and JφKN = LφMN‡ .

For a modal lattice A we define A φ P ψ and A φ = ψ the same way as in Definition
3.2. We also write φ Γ ψ if any modal lattice that validates all consequence pairs in Γ also
validates φ P ψ. Then we can prove the next theorem in the same way as in Section 3.1.

4.13 Theorem. Let Γ∪{φ P ψ} be a set of modal consequence pairs. Then φ ⊢Γ ψ iff φ Γ ψ.

4.3 Modal L-spaces and Duality

We define the modal counterpart of L-spaces as follows.

4.14 Definition. A modal L-space is a tuple (X, 1,⋏, τ, R) such that

1. (X, 1,⋏, τ) is an L-space;

2. R is a binary relation on X such that 1Rx iff x = 1 for all x ∈ X;

3. If a is a clopen filter, then so are [R]a and ⟨R⟩a;

4. For all x, y ∈ X we have xRy if and only if for all a ∈ FclpX:

• If x ∈ [R]a then y ∈ a;

• If y ∈ a then x ∈ ⟨R⟩a.

Truth and validity in modal L-spaces is defined as usual, using clopen valuations.

The third item is a condition often seen in the definition of general frames. Item (4) is our
counterpart of the tightness condition, and has previously been used in [7, Section 2]. Next, we
prove that each modal L-space has an underlying (principal) modal L-frame.

4.15 Lemma. Let X = (X, 1,⋏, τ, R) be a modal L-space. Then R[x] is closed for all x ∈ X.

Proof. Suppose y /∈ R[x]. Then there exists a clopen filter a such that either x ∈ [R]a and
y /∈ a, or y ∈ a and x /∈ ⟨R⟩a. In the first case X \ a is a clopen neighbourhood of y disjoint
from R[x]. In the second case a is a clopen neighbourhood of y disjoint from R[x].

4.16 Proposition. Let X = (X, 1,⋏, τ, R) be a modal L-space. Then (X, 1,⋏, R) is a principal
modal L-frame.
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Proof. We know that L-spaces have all non-empty meets, and hence also binary joins, so (0)
is satisfied. Furthermore, (5) is satisfied by definition. We verify the other conditions from
Definition 4.1, starting with (4′).

Condition 4′. Suppose xiRyi, where i ranges over some index set I. If I = ∅ then this condition
states 1R1 which holds by definition, so assume that I ̸= ∅. By the tightness condition of
modal L-spaces, in order to prove (

c
xi)R(

c
yi) it suffices to show that for all clopen filters a,c

xi ∈ [R]a implies
c
yi ∈ a and

c
yi ∈ a implies

c
xi ∈ ⟨R⟩a.

First assume
c
xi ∈ [R]a. Since [R]a is a clopen filter and

c
xi ≼ xj for each j ∈ I we have

xj ∈ [R]a, so R[xj ] ⊆ a. By assumption xjRyj , so yj ∈ a for all j ∈ I. Since a is a clopen
filter, it is principal, hence

c
yi ∈ a. Second, suppose

c
yi ∈ a. Then yj ∈ a for all j ∈ I,

which implies xj ∈ ⟨R⟩a for all j ∈ I. Since ⟨R⟩a is a clopen filter, hence principal, we findc
xi ∈ ⟨R⟩a.

Condition 1. Let x ≼ y and yRz. Suppose towards a contradiction that there exists no w ∈ X
such that xRw and w ≼ z. Let x′ =

c
R[x] be the minimal element in R[x] (which is an

R-successor of x by (4′)). Then x′ ̸≼ z, so we can find a clopen filter a containing x′ such that
z /∈ a. This implies R[x] ⊆ a, so that x ∈ [R]a, but y /∈ [R]a because yRz and z /∈ a. As x ≼ y
this violates the fact that [R]a is a filter.

Condition 2. Let x ≼ y and xRw. Suppose towards a contradiction that there exists no
z ∈ X such that yRz and w ≼ z. Then R[y] ∩ ↑w = ∅. Both R[y] and ↑w are closed, as a
consequence of Lemmas 4.15 and 2.9 and the fact that singletons in a Stone spaces are always
closed. Therefore we can find a clopen filter a containing ↑z which is disjoint from R[y]. This
implies that x ∈ ⟨R⟩a while y /∈ ⟨R⟩a. Since x ≼ y this contradicts the fact that ⟨R⟩a is a filter.

Condition 3′. Finally, let {xi | i ∈ I} be some collection of elements of X and suppose
(
c
xi)Rz. If I is empty then

c
xi = 1 and Definition 4.14(2) implies z = 1, and the empty

collection witnesses truth of (3′). So assume I ̸= ∅. Since
c
xi ≼ xj for all j ∈ I, condition

(2) implies that R[xj ] ̸= ∅ for all j ∈ I. As a consequence of (4′) there is a smallest element
zj :=

c
R[xj ] in each R[xj ]. We claim that

c
zj ≤ z. Suppose not, then there is a clopen filter

a containing
c
zj such that z /∈ a. This implies xj ∈ [R]a for all j ∈ I, but

c
xi /∈ [R]a because

(
c
xi)Rz and z /∈ a. But this contradicts the fact that [R]a is principal filter.

This proposition motivates the following definition.

4.17 Definition. Let X = (X, 1,⋏, τ, R) be a modal L-space. Then we write πX = (X, 1,⋏, R)
for the underlying principal modal L-frame, and κX = (X, 1,⋏, R) for the underlying principal
modal L-frame regarded as a modal L-frame.

While they may appear the same, the difference between πX and κX lies in the valuations
they allow for. While valuations of πX necessarily interpret proposition letters as principal
filters, a valuation for κX can assign any filter to a proposition letter. As a consequence, both
frames differ in terms of validity.

For future reference, we prove the following lemma about modal L-spaces. It states that the
action of [R] and ⟨R⟩ on any filter is determined by their action on clopen filters.

4.18 Lemma. Let X = (X, 1,⋏, τ, R) be a modal L-space. Then for every closed filter c ∈
Fk(X),

[R]c =
⋂{

[R]a | a ∈ Fclp(X), c ⊆ a
}

and ⟨R⟩c =
⋂{

⟨R⟩a | a ∈ Fclp(X), c ⊆ a
}
. (9)
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Furthermore, for every filter d ∈ F(X) we have

[R]d =
h{

[R]c | c ∈ Fk(X), c ⊆ d
}

and ⟨R⟩d =
h{

⟨R⟩c | c ∈ Fk(X), c ⊆ d
}
. (10)

Proof. The left-to-right inclusion of the first equality follows from the fact that c ⊆ a implies
[R]c ⊆ [R]a. For the converse, suppose x ∈ X is such that x /∈ [R]c. Then R[x] ̸⊆ c, so there is
some y ∈ R[x] such that y /∈ c. Since c is a closed filter, it is the intersection of all clopen filters
that contain it. A routine compactness argument yields a clopen filter b containing c such that
y /∈ b. Therefore R[x] ̸⊆ b, so x /∈ [R]b and hence x is not in the right hand side of the equality.

For the second equality, it suffices to prove the right-to-left inclusion as well. Suppose
x /∈ ⟨R⟩c. Then R[x]∩ c = ∅. Since R[x] is closed, we can use compactness to find some clopen
filter a containing c disjoint from R[x], and the argument proceeds as above.

Next, consider (10). We know that c ⊆ d implies [R]c ⊆ [R]d, and since the latter is a filter
containing [R]c for all closed filters c ⊆ d, it contains the filter generated by them. This proves
⊇. Conversely, suppose x ∈ [R]d. Then R[x] ⊆ d. Since d is up-closed we also have ↑R[x] ⊆ d.
The set ↑R[x] is closed by Lemmas 4.15 and 2.9, and it is a filter because R[x] is closed under ⋏.
Thus we have found a closed filter c := ↑R[x] contained in d such that x ∈ [R]c. This proves ⊆.

The right-to-left inclusion of the second equality in (10) is easy again. For ⊆, suppose
x ∈ ⟨R⟩d. Then R[x] ∩ d ̸= ∅, so we can find some y ∈ R[x] ∩ d. Now ↑y is a closed filter
contained in d such that x ∈ ⟨R⟩(↑y), witnessing ⊆.

Since we know that each modal L-space has an underlying modal L-frame, we can now
conveniently define the morphisms between them as follows.

4.19 Definition. A modal L-space morphism from (X, 1,⋏, τ, R) to (X ′, 1′,⋏′, τ ′, R′) is a
function f : X → X ′ such that f : (X, 1,⋏, τ) → (X ′, 1′,⋏′, τ ′) is an L-space morphism and
f : (X, 1,⋏, R) → (X ′, 1′,⋏′, R′) is a bounded L-morphism. We denote the resulting category
by MLSpace.

We work towards a duality between modal lattices and modal L-spaces.

4.20 Proposition. If X = (X, 1,⋏, τ, R) is a modal L-space then (FclpX, [R], ⟨R⟩) is a modal
lattice. Moreover, if f : X → X′ is a modal L-space morphism, then

Fclpf = f−1 : (FclpX′, [R′], ⟨R′⟩) → (FclpX, [R], ⟨R⟩)

is a modal lattice homomorphism.

Proof. The maps [R], ⟨R⟩ are functions on FclpX by definition. It follows from Proposition 4.16
and Lemma 4.7 that they satisfy the conditions from Definition 4.10.

If f is a modal L-space morphism then in particular it is an L-space morphism, so Fclpf is
a lattice homomorphism from FclpX′ to FclpX. So we only have to show that f−1 preserves the
modalities. This can be proven in the same way as in Proposition 4.6.

We now show how to turn a modal lattice into a modal L-space.

4.21 Definition. Let 𝒜 = (A, , ) be a modal lattice. Then we define the binary relation
RA on FbA by

pRAq iff −1(p) ⊆ q ⊆ −1(p).

4.22 Lemma. Let (A, , ) be a modal lattice and p ∈ FA. Then −1(p) is a filter in FA
and pRA

−1(p).
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Proof. The set −1(p) is a filter because : A→ A preserves conjunctions and the top element.
To show pRA

−1(p) we need to prove −1(p) ⊆ −1(p) ⊆ −1(p). The left inclusion is trivial.
For the right one, suppose a ∈ −1(p). Then a ∈ p. Besides, ⊤ = ⊤ ∈ p. So the duality
axiom implies ⊤ ∧ a ≤ (⊤ ∧ a) = a ∈ p, hence a ∈ −1(p).

4.23 Lemma. Let (A, , ) be a modal lattice. Then for each a ∈ A we have

[RA]θA(a) = θA( a) and ⟨RA⟩θA(a) = θA( a).

Proof. Suppose p ∈ [RA]θA(a). By Lemma 4.22 we have pRA
−1(p) and by assumption a ∈

−1(p). This implies that a ∈ p and therefore p ∈ θA( a). For the reverse inclusion, suppose
p ∈ θA( a). Then a ∈ −1(p), so pRAq implies a ∈ q, and hence p ∈ [RA]θA(a).

Next, suppose p ∈ ⟨RA⟩θA(a). Then there exists a filter q such that pRAq and a ∈ q. By
definition of RA this implies a ∈ −1(p) and hence a ∈ p, so p ∈ θA( a). Conversely, suppose
p ∈ θA( a). Let q be the filter generated by −1(p) and a. We claim that c ∈ q implies c ∈ p.
To see this, note that for each c ∈ q there exists some d ∈ −1(p) such that d∧ a ≤ c. We then
have d ∈ p, and a ∈ p by assumption, so d ∧ a ∈ p. Since d ∧ a ≤ (d ∧ a) ≤ c we
find c ∈ p. The filter q is nonempty because it contains ⊤. Furthermore, we have −1(p) ⊆ q
by definition of q and we just showed that c ∈ q implies c ∈ p, so that q ⊆ −1(p). This
proves pRAq. By design a ∈ q so q witnesses the fact that p ∈ ⟨RA⟩θA(a).

4.24 Lemma. If 𝒜 = (A, , ) is a modal lattice, then 𝒜∗ := (FA,A,∩, τA, RA) is a modal
L-space.

Proof. We verify the condition from Definition 4.14. Item (1) follows from Theorem 2.14. Item
(2) follows from the definition of RA. Item (3) follows from Lemma 4.23. Item (4) follows from
the definition of RA and the fact that each clopen filter is of the form θA(a).

4.25 Lemma. Let h : 𝒜 → 𝒜′ be a modal lattice homomorphism. Then Fh = h−1 : 𝒜′
∗ → 𝒜∗

is a bounded L-space morphism.

Proof. It follows from the duality between lattices and L-spaces that h−1 is an L-space mor-
phism, so we only have to verify the three conditions from Definition 4.5. We write R′ and R
for the relations from 𝒜′

∗ and 𝒜∗.

1. Let p′ and q′ be filters of 𝒜′ (elements of 𝒜′
∗) such that p′R′q′. In order to prove that

h−1(p′)Rh−1(q′) we have to show that −1(h−1(p′)) ⊆ h−1(q′) ⊆ −1(h−1(p′)). Let a ∈
−1(h−1(p′)). Then a ∈ h−1(p′) so ′(h(a)) = h( a) ∈ p′. Therefore h(a) ∈ ( ′)−1(p′),

and since p′R′q′ this implies h(a) ∈ q′, so that a ∈ h−1(q′). Next, if a ∈ h−1(q′) then
h(a) ∈ q′, so h( a) = ′h(a) ∈ p′. Therefore a ∈ h−1(p′) so that a ∈ −1(h−1(p′)).

2. Suppose h−1(p′)Rq. Lemma 4.22 then implies that p′R′( ′)−1(p′). So it suffices to show
that h−1(( ′)−1(p′)) ⊆ q. To this end, suppose a ∈ h−1(( ′)−1(p′)). Then h( a) =
′h(a) ∈ p′, so a ∈ h−1(p′). Since h−1(p′)Rq this implies a ∈ q, as desired.

3. Suppose h−1(p′)Rq. Then ↑h[q] is a filter (since h is a lattice homomorphism it is non-
empty and closed under meets). Let q′ be the filter generated by ↑h[q] and ( ′)−1(p′).
Then q ⊆ h−1(q′) by construction, so it suffices to show that p′R′q′. We have ( ′)−1(p′) ⊆
q′ by definition, so we only have to show that q′ ⊆ ( ′)−1(p′). Let a′ ∈ q′. Then there
are b′ ∈ ( ′)−1(p′) and c ∈ q such that b′ ∧′ h(c) ≤ a′. We find

′b′ ∧ h( c) = ′b′ ∧ ′h(c) ≤ a′.
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By construction we have ′b′ ∈ p′. Furthermore, c ∈ q implies c ∈ h−1(p′) and hence
h( c) ∈ p′. Therefore a′ ∈ p′, and consequently p′R′q′.

Using the above lemmas we now establish a duality for modal lattices.

4.26 Theorem. The duality between Lat and LSpace lifts to a duality

MLat ≡op MLSpace.

Proof. Let X = (X,≤, τ, R) be a modal L-space. This gives rise to the modal lattice X∗ =
(FclpX, [R], ⟨R⟩), which in turn yields a modal L-space (X∗)∗ = (FFclpX,FclpX,∩, τFclpX, RFclpX).
As a consequence of the duality for lattices (Theorem 2.14) we know that (X, 1,⋏, τ) is isomor-
phic to (FbFclpX, A,∩, τFclpX) via x 7→ ηX(x) = {a ∈ FclpX | x ∈ a}. So we only have to show
that R and RFclpX coincide. This can be seen as follows:

xRy iff ∀a ∈ FclpX
(
x ∈ [R]a implies y ∈ a and y ∈ a implies ⟨R⟩a

)
iff ∀a ∈ FclpX

(
[R]a ∈ ηX(x) implies a ∈ ηX(y) and a ∈ ηX(y) implies ⟨R⟩a ∈ ηX(x)

)
iff ∀a ∈ FclpX

(
[R]−1(ηX(x)) ⊆ ηX(y) ⊆ ⟨R⟩−1(ηX(x))

)
iff ηX(x)RFclpXηX(y)

Next, let𝒜 = (A, , ) be a modal lattice, 𝒜∗ = (FA,RA) and (𝒜∗)
∗ = (FclpFA, [RA], ⟨RA⟩).

Then the duality for lattices from Theorem 2.14 tells us that A and FclpFA are isomorphic via
a 7→ θA(a) = {p ∈ FA | a ∈ p}, so we just have to show that coincides with [RA] and coin-
cides with ⟨RA⟩. That is, we have to show that θA( a) = [RA]θA(a) and θA( a) = ⟨RA⟩θA(a).
But we have already proven that in Lemma 4.23.

The two paragraphs above establish the duality on objects. The duality for morphisms
follows immediately from Theorem 2.14 and the fact that all our categories are concrete.

4.4 Completions of modal lattices

We extend the Π1-completion to modal lattices. Lemma 4.18 suggests the following definition
of completions of a modal lattice.

4.27 Definition. Let 𝒜 = (A, , ) be a modal lattice. Let i : A → fe(A) be the filter
completion of A, and j : A→ ie(A) the ideal completion.

1. The filter completion of 𝒜 is the modal lattice fe(𝒜) = (fe(A), fe, fe) where

⋆
fec =

∧
{i(⋆a) | a ∈ A and c ≤ i(a)} for ⋆ ∈ { , }.

2. The ideal completion of 𝒜 is the modal lattice ie(𝒜) = (ie(A), ie, ie) where

⋆
iec =

∨
{j(⋆a) | a ∈ A and j(a) ≤ c} for ⋆ ∈ { , }.

3. The Π1-completion of 𝒜 is ie(fe(𝒜)), i.e. the composition of the filter and the ideal com-
pletion.

Concretely, if we view fe(A) as sitting inside Π1(A), then the Π1-completion of 𝒜 is the
modal lattice Π1(𝒜) = (Π1(A),

Π1 , Π1) where

⋆
Π1d =

∨
{⋆fec | c ∈ fe(A) and c ≤ d} for ⋆ ∈ { , }. (11)
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Recall that the modal L-frame underlying a modal L-space is principal, so both the collection
of closed filters as well as the collection of all filters form modal lattices. We already proved
(for the duality result) that the function θ : 𝒜 → (𝒜∗)

∗ satisfies θ( a) = [RA]θ(a) and θ( a) =
⟨RA⟩θ(a), so we can use that.

4.28 Proposition. Let 𝒜 = (A, , ) be a modal lattice and X its dual modal L-space. Then:

1. fe(𝒜) is isomorphic to the modal lattice of closed filters of X, i.e. to (πX)‡;

2. Π1(𝒜) is isomorphic to the modal lattice of filters of X, i.e. to (κX)∗.

Proof. Let X = (X, 1,⋏, τ, RA) be the modal L-space dual to 𝒜. By Proposition 2.18 we can
identify the filter extension of A with the lattice of closed filters of X with inclusion θ : A →
Fk(X). In Fk(X), the top, bottom and meet are given by X, {1} and intersection, and the join
of a collection of filters is the smallest filter containing their union. So we only have to verify
that for all c ∈ Fk(X) we have fec = [RA]c and

fec = ⟨RA⟩c. Thus compute

fec =
⋂{

θ( a) | a ∈ A, c ⊆ θ(a)
}

(Definition of fe)

=
⋂{

[RA]θ(a) | a ∈ A, c ⊆ θ(a)
}

(Lemma 4.23)

=
⋂{

[RA]b | b ∈ Fclp(X), c ⊆ b
}

(θ is an iso from A to Fclp(X))

= [RA]c. (Lemma 4.18)

Similarly we find fec = ⟨RA⟩c for all c ∈ Fk(X).
For the second item we adopt a similar strategy. Using Proposition 2.18, we identify the

Π1-completion of A with F(X), the filters of X with operators as in (11), and inclusion θ :
A → F(X). We view the filter completion of A as sitting inside the Π1-completion, just like
Fk(X) ⊆ F(X). Then we already know that fec = [RA]c for all closed filters, therefore

Π1d =
h{

fec | c ∈ fe(A), c ⊆ d
}
=

h{
[RA]c | c ∈ Fk(X), c ⊆ d

}
= [R]d

for all filters d. We use Lemma 4.18 for the last equality. Similarly we find Π1d = ⟨RA⟩d.

Proposition 4.28 immediately implies:

4.29 Corollary. The filter and Π1-completion of a modal lattice are modal lattices themselves.

Next, we work towards a preservation theorem.

4.30 Theorem. Let 𝒜 = (A, , ) be a modal lattice and φ,ψ ∈ L . Then

𝒜 φ P ψ iff fe(𝒜) φ P ψ.

The proof of the theorem relies on Lemma 4.31. We use following definition: if θ1 and θ2
are valuations for 𝒜, then we define the valuation θ1 ∧ θ2 by (θ1 ∧ θ2)(p) := θ1(p) ∧ θ2(p).

4.31 Lemma. Let 𝒜 = (A, , ) be a modal lattice, fe(𝒜) its filter completion, and σ a
valuation of the proposition letters for fe(𝒜).

1. If a ∈ A and φ ∈ L are such that a ∈ σ(φ), then there exists a valuation θ for 𝒜 such
that θ(p) ∈ σ(p) for all p ∈ Prop and θ(φ) ≤ a.
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2. If θ is a valuation for 𝒜 such that θ(p) ∈ σ(p) for all p then θ(φ) ∈ σ(φ) for all φ ∈ L .

Proof. We start with the first statement. We proceed by induction on the structure of φ. If
φ = p ∈ Prop then we set θ(p) = a and θ(q) = ⊤ for all other q ∈ Prop. If φ = ⊤ then
θ(⊤) = ⊤ ∈ {⊤} = σ(⊤), and if φ = ⊥ then θ(⊥) = ⊥ ∈ A = σ(⊥).

Suppose φ = φ1 ∧ φ2. If a ∈ σ(φ1 ∧ φ2) = σ(φ1) ▽ σ(φ2) then there are a1 ∈ σ(φ1)
and a2 ∈ σ(φ2) such that a1 ∧ a2 ≤ a. The induction hypothesis then gives valuations θ1, θ2
for 𝒜 such that θ1(φ1) ≤ a1 and θ2(φ2) ≤ a2, and such that θ1(p) ∈ σ(p) and θ2(p) ∈ σ(p)
for all p ∈ Prop. Let θ = θ1 ∧ θ2. Since θi(p) ∈ σ(p) for all p ∈ Prop, and σ(p) is a filter,
we have θ(p) ∈ σ(p) for all p ∈ Prop. Then θ(φi) ≤ θi(φi) for i ∈ {1, 2}, and we find
θ(φ1 ∧ φ2) = θ(φ1) ∧ θ(φ2) ≤ θ1(φ1) ∧ θ2(φ2) ≤ a1 ∧ a2 ≤ a.

If φ = φ1 ∨φ2, then a ∈ σ(φ1 ∨φ2) = σ(φ1)∩σ(φ2) so there are valuations θ1, θ2 such that
θ1(φ1) ≤ a and θ2(φ2) ≤ a, and such that θ1(p) ∈ σ(p) and θ2(p) ∈ σ(p) for all p ∈ Prop. Let
again θ = θ1 ∧ θ2. Then just as above θ(p) ∈ σ(p) for all p ∈ Prop. Moreover, θ(φ1 ∨ φ2) =
θ(φ1) ∨ θ(φ2) ≤ θ1(φ1) ∨ θ2(φ2) ≤ a ∨ a = a.

Finally, let ⋆ ∈ { , } and φ = ⋆φ1. Suppose a ∈ σ(⋆φ1). Then

a ∈ σ(⋆φ1) = ⋆
feσ(φ1) =

∧
{↑(⋆b) | b ∈ A, σ(φ1) ≤ ↑b} =

∧
{↑(⋆b) | b ∈ A, b ∈ σ(φ1)}.

The last equality follows from the fact that filters are ordered by reverse inclusion, so that
σ(φ1) ≤ ↑b iff σ(φ1) ⊇ ↑b iff b ∈ σ(φ1). Since

∧
in fe(𝒜) is defined as

`
, there exist b1, . . . , bn ∈

A such that bi ∈ σ(φ1) for all i ∈ {1, . . . , n} and ⋆b1 ∧ · · · ∧⋆bn ≤ a. The induction hypothesis
implies that there exist valuations θ1, . . . , θn for 𝒜 such that θi(φ1) ≤ bi and θi(p) ∈ σ(p) for
all p ∈ Prop and i ∈ {1, . . . , n}. Since ⋆ is monotone we find θi(⋆φ1) = ⋆θi(φ1) ≤ ⋆bi for
all i. Letting θ = θ1 ∧ · · · ∧ θn gives θ(⋆φ1) ≤ θi(⋆φ1) ≤ ⋆bi for all i, so that θ(⋆φ1) ≤
⋆b1 ∧ · · · ∧ ⋆bn ≤ a, as desired. Since σ(p) is a filter and θi(p) ∈ σ(p) for all i ∈ {1, . . . , n} we
find θ(p) ∈ σ(p) for all p ∈ Prop.

We prove the second item by induction on the structure of φ as well. The base cases
φ = ⊤,⊥, p ∈ Prop are routine. Suppose φ = φ1∧φ2. By induction we have θ(φ1) ∈ σ(φ1) and
θ(φ2) ∈ σ(φ2). So θ(φ1 ∧ φ2) = θ(φ1) ∧ θ(φ2) ∈ σ(φ1) ▽ σ(φ2) = σ(φ1 ∧ φ2). If φ = φ1 ∨ φ2,
then with the same induction hypothesis we find θ(φi) ≤ θ(φ1 ∨ φ2) so θ(φ1 ∨ φ2) ∈ σ(φi) for
i ∈ {1, 2}. Therefore θ(φ1 ∨ φ2) ∈ σ(φ1) ∩ σ(φ2) = σ(φ1 ∨ φ2). Lastly suppose ⋆ ∈ { , }
and φ = ⋆φ1. By the induction hypothesis we have θ(φ1) ∈ σ(φ1), so σ(φ1) ⊇ ↑θ(φ1) and
since fe(𝒜) is ordered by reverse inclusion, it follows from the definition of ⋆

fe that ⋆
feσ(φ1) ⊇

↑⋆θ(φ1), hence

θ(⋆φ1) = ⋆θ(φ1) ∈ ⋆
feσ(φ1) = σ(⋆φ1)

as desired.

We can now prove the theorem.

Proof of Theorem 4.30. We have 𝒜 φ P ψ iff 𝒜 φ ∧ ψ = φ, so it suffices to focus
on equalities. The proposition letters play the role of variables, and every valuation of the
proposition letters to elements in 𝒜 extends to valuations for φ and ψ in the obvious way.

So suppose 𝒜 φ = ψ. Let σ be any valuation for fe(𝒜) and a ∈ A. We aim to prove that
a ∈ σ(φ) if and only if a ∈ σ(ψ). So suppose a ∈ σ(φ). Then by Lemma 4.31(1) we can find a
valuation θ for 𝒜 such that θ(φ) ≤ a. By assumption 𝒜 φ = ψ, so θ(ψ) = θ(φ) ≤ a, hence
by Lemma 4.31(2) we find a ∈ σ(ψ). Similarly we can prove that a ∈ σ(ψ) implies a ∈ σ(φ) so
that σ(φ) = σ(ψ). Since σ is arbitrary, we conclude fe(𝒜) φ = ψ.
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We note that the proof of Lemma 4.31 only relies on monotonicity of the modalities. Thus
it yields an analogue of Theorem 4.30 for lattices with monotone operators.

The arguments from Lemma 4.31 and Theorem 4.30 can be dualised to similar results for
ideal completions. The ideal completion of a modal lattice need not give rise to a modal lattice,
but it does give rise to a lattice with two monotone operators, and the modal cases from
Lemma 4.31 and Theorem 4.30 only rely on monotonicity of the modalities. Thus we obtain a
similar results for the ideal completion and hence for the Π1-completion of a modal lattice.

4.32 Theorem. Let 𝒜 = (A, , ) be a modal lattice and φ,ψ ∈ L . Then

𝒜 φ P ψ iff fe(𝒜) φ P ψ iff Π1(𝒜) φ P ψ.

We can use this algebraic result to obtain completeness for weak positive modal logics.
Theorem 4.32 yields the following analogue of Lemma 3.21

4.33 Lemma. Any consequence pair ψ P χ of L -formulae is Π1-persistent.

4.34 Theorem. Let Γ be a set of consequence pairs. Then the logic L (Γ) is sound and
complete with respect to the following classes of frames:

• Modal L-spaces validating Γ;

• Principal modal L-frames validating Γ;

• Modal L-frames validating Γ.

Proof. Similar to the proof of Theorem 3.22.

4.5 Sahlqvist Correspondence

We extend the results from Section 3.4 to obtain Sahlqvist correspondence for modal L-frames.
Our definition of a Sahlqvist consequence pair is closely aligned to Sahlqivst formulae from
normal modal logic (see e.g. [6, Definition 3.51]). To account for the additional relation in the
definition of a modal L-model, we work with a first-order logic with an extra binary relation
symbol (compared to Section 3.4). That is, we let FOL2 be the first-order logic with a unary
predicate for each proposition letter and two binary predicates S (corresponding to the partial
order) and R (corresponding to the modal relation). We write SOL2 for the second-order logic
with the same predicates where we allow quantification over unary predicates. Every modal
L-model M gives rise to a first-order structure M◦ for FOL2 in the obvious way, and similarly
every modal L-frame X yields a structure X◦ where we can interpret SOL2-formulae with
no free predicates. We extend the standard translation from Definition 3.26 to a translation
stx : L → FOL2 by adding the clauses

stx( φ) = ∀y(xRy → sty(φ)), stx( φ) = ∃y(xRy ∧ sty(φ)).

We then have the following counterpart of Proposition 3.27.

4.35 Proposition. Let M be a modal L-model, w a state in M and φ an L -formula. Then

1. M, w ⊩ φ iff M◦ |= stx(φ)[w];

2. M, w ⊩ φ P ψ iff M◦ |= stx(φ P ψ)[w].
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Defining the second-order translation of a modal consequence pair φ P ψ as in Defini-
tion 3.28, we can extend Lemma 3.29 to the next lemma:

4.36 Lemma. For all modal L-frames X = (X,≤, R) and modal consequence pairs ψ P χ,

X, w ⊩ ψ P χ iff X◦ |= so(ψ P χ)[w].

Finally, we still have monotonicity of all connectives of L , so the following analogue of
Lemma 3.31 goes through without problems.

4.37 Lemma. Let X be a modal L-frame and let V and V ′ be valuations for X such that
V (p) ⊆ V ′(p) for all p ∈ Prop. Then for all φ ∈ L we have V (φ) ⊆ V ′(φ).

We are now ready to define Sahlqvist consequence pairs and prove a correspondence result.
We make use of the following notion of a boxed atom.

4.38 Definition. A boxed atom is a formula of the form

np := · · ·︸ ︷︷ ︸
n times

p,

where p is a proposition letter. A Sahlqvist antecedent is a formula made from boxed atoms, ⊤
and ⊥ by freely using ∧, ∨ and . A modal consequence pair φ P ψ is called Sahlqvist if φ is
a Sahlqvist antecedent (and ψ is any formula).

If R is a relation, then we write Rn for the n-fold composition of R. That is, xRny if there
exist x0, . . . , xn such that x = x0, y = xn and xiRxi+1 for all i ∈ {0, . . . , n − 1}. With this
definition, truth of np in a modal L-model M = (X,≤, R, V ) can be given as

M, x ⊩ np iff ∀y ∈ X,xRny implies M, y ⊩ p.

We legislate xR0y iff x = y. Then the interpretation of 0p simply coincides with p.

4.39 Theorem. Any Sahlqvist modal consequence pair ψ P χ locally corresponds to a first-
order formula with one free variable.

Proof. By Lemma 4.36 we have X, w ⊩ ψ P χ if and only if X◦ |= so(ψ P χ)[w]. As in
Theorem 3.32, our strategy for obtaining a first-order formula is to remove all second-order
quantifiers from so(ψ P χ)[w]. We assume that no two quantifiers bind the same variable. The
case where ψ = ⊤ or ⊥ can be handled as in Theorem 3.32. Let p1, . . . , pn be the propositional
variables occurring in ψ, and write P1, . . . , Pn for their corresponding unary predicates. We
assume that every proposition letter that occurs in χ also occurs is ψ, for otherwise we may
replace it by ⊥ to obtain a formula which is equivalent in terms of validity on frames.

Step 1. Use equivalences of the form

(∃w(α(w)) ∧ β) ↔ ∃w(α(w) ∧ β), (∃w(α(w)) ∨ β) ↔ ∃w(α(w) ∨ β),

and
(∃w(α(w)) → β) ↔ ∀w(α(w) → β)

to pull out all existential quantifiers that arise in stx(ψ). Let Y := {y1, . . . , ym} denote the
set of (bound) variables that arise in the antecedent of the implication from the second-order
translation. We end up with a formula of the form

∀P1 · · · ∀Pn∀y1 · · · ∀ym
(
(ISFIL∧AT∧REL) → stx(χ)

)
(12)

where
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• ISFIL is a conjunction of formulae of the form isfil(Pi);

• BOX-AT is a conjunction of standard translations of boxed proposition letters, i.e. for-
mulae of the form ∀z(z′Rnz → Piz) (here Piz is viewed as ∀z(z′R0z → Piz));

• REL is a conjunction of formulae of the form zRz′ and abovemeet(z; , z′, z′′).

Step 2. Next we read off minimal instances of the Pi making the antecedent true. For each
proposition letter Pi, let ∀yi1(zi1Rn1yi1 → Piyi1), . . . ,∀yik(zikRnkyik → Piyik) be the occur-
rences of Pi in BOX-AT in the antecedent of (12). Intuitively, we define the valuation of pi to
be the filter generated by the (interpretations of) yi1 , . . . , yik . Formally,

σ(Pi) :=
∨{

∃wi1 · · · ∃wik

(
zi1R

n1wi1 ∧ · · · ∧ zikRnkwik

∧ abovemeet(u;wi1 , . . . , wik)
)
| {i1, . . . , ik}

}
.

(If k = 0, i.e. there are no boxed atoms involving Pi in the formula, then we take the empty
meet to be falsum, i.e. σ(Pi) = λu.(u ̸= u).)

The remainder of the proof is analogous to the proof of Theorem 3.32.

In the next example we apply the algorithm of the proof of Theorem 4.39 to two simple
consequence pairs, p P p and p P p. The shows the mechanism of the proof in action.
Moreover, it demonstrates that the duality between and is weaker than in the classical
case, because the formulae locally correspond to different frame conditions.

In the correspondents, we write R for the modal relation and ≼ for the poset order. Tech-
nically this should be S, which is then interpreted as ≼. Besides, note that abovemeet(u; z) is
the same as zSu, which we denote by z ≼ u. Similarly, abovemeet(u; z, z′) means z ⋏ z′ ≼ u.

4.40 Example. The second-order translation of p P p is

∀P (isfil(P ) ∧ Px→ ∃y(xRy ∧ Py))

This is already of the desired shape, so we proceed to Step 2. We find σ(P ) = λu.x ≼ u.
Substituting this gives the first-order formula ∀x(isfil(P )∧ (x ≼ x) → ∃y(xRy ∧ (x ≼ y))). The
antecedent of the formula is always true, so the (simplified) local correspondent of p P p is

∃y(xRy ∧ x ≼ y).

Thus, a frame satisfies p P p if ∀x∃y(xRy ∧ x ≼ y). ◁

4.41 Example. Next consider p P p. The second-order translation is

∀P∀x(isfil(P ) ∧ ∀y(xRy → Py) → Px).

Then σ(P ) = λu.∃y(xRy ∧ y ≼ u). Instantiating this makes the antecedent of the outer
implication vacuously true, so that we get the local correspondent ∃y(xRy ∧ y ≼ x). Validity of
p P p on a frame then corresponds to ∀x∃y(xRy ∧ y ≼ x). ◁

Next, we use Theorem 4.39 to enforce normality for the diamond operator. It follows from
Lemma 4.7 that p∨ q P (p∨q) is valid in every modal L-frame, so we focus on its converse.
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4.42 Example. If we want to preserve binary joins we need to add

(p ∨ q) P p ∨ q (13)

to our logic. This is Sahlqvist, so we can use the algorithm from Theorem 4.39 to the first-order
frame condition ensuring its validity. The second-order translation is

∀P
(
isfil(P ) ∧ isfil(Q) ∧ ∃y(xRy ∧ (∃z∃z′(abovemeet(y; z, z′) ∧ Pz ∧Qz′))) → stx( p ∨ q)

)
.

Processing the formula, we obtain the following second-order translation:

∀P∀Q∀x∀y∀z∀z′(ISFIL∧xRy ∧ abovemeet(y; , z, z′) ∧ Pz ∧Qz′ → stx( p ∨ q)) (14)

This gives σ(P ) = λu.z ≼ u, σ(Q) = λu.z′ ≼ u. The standard translation of the antecedent is

stx(χ) = ∃v∃v′(abovemeet(x; v, v′) ∧ ∃w(vRw ∧ Pw) ∧ ∃w′(v′Rw′ ∧Qw′)).

Substitution P and Q and omitting trivial terms we obtain the following local correspondent:

∀y∀z∀z′
(
(xRy∧(z⋏z′ ≼ y)) → ∃v∃v′((v⋏v′ ≼ x)∧∃w(vRw∧z ≼ w)∧∃w′(v′Rw′∧z′ ≼ w′))

)
.

In a picture:

x y

v v′

w w′
v ⋏ v′

z z′

z ⋏ z′

R

R

R

A modal L-frame satisfies normality of if this holds for all states x. It is a relational analogue
of the second condition from Definition 2.4 that ensures preservation of joins. ◁

5 Conclusion

We have given a new duality for bounded (not necessarily distributive) lattices which resembles
Stone-type dualities. It builds on a known duality for the category of bounded meet-semilattices
given by Hofmann, Mislove and Stralka [32]. The relation between our duality and the duality
by Hofmann, Mislove and Stralka is similar to the relation between Esakia duality and Priestley
duality. It can also be seen as a Stone-type analogue of Jipsen and Moshier’s spectral duality
for lattices [40].

We also extended the duality to one for a modal extension of weak positive logic with
and . While these are interpreted using a relation in the way as in normal modal logic over a
classical base, the non-standard interpretation of joins causes to no longer be join-preserving.
This interesting phenomenon has also been observed in the context of modal intuitionistic
logic [38].

As the dualities presented in this paper resemble known dualities used in modal logic, they
allow us to use similar tools and techniques. To showcase this, we proved Π1-persistence and
Sahlqvist correspondence results along the lines of [6].

There are many intriguing avenues for further research, some of which we list below.
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Finite model property. While it is easy to derive the finite model property for weak positive
logic, the same result for the modal extension presented in this paper appears to be non-
trivial.

Relation to ortho(modular) lattices. Ortholattices and orthomodular lattices provide other
interesting classes of lattices with operators. However, in ortholattices the orthocomple-
ment is turning joins into meets. Duality for these structures has been discussed by
Goldblatt [23, 24] and Bimbo [5]. In [14, Chapter 6] the duality for lattices is extended to
account for a modal operators that turn joins into meets. Recently modal ortholattices
have been studied in [33]. We leave it an an interesting open problem to see whether the
preservation and correspondence results of this paper can be extended to this setting. It is
also open whether these technique could be extended to orthomodular lattices [36]. This
is especially interesting as orthomodalur lattices provide algebraic structures of quantum
logic [13], so these methods could be relevant in the study of quantum logic.

Different modalities. Yet another question is what other modal extensions of weak positive
logic we can define. In particular, it would be interesting to define a form of neighbourhood
semantics based on the L-frames used in this paper and investigate the behaviour of the
resulting modalities.

Acknowledgements We are very grateful to the referee for many significant comments, deep
insights, and pointers to the literature that made us rethink and improve on a number of
important components of this work.
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